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the kernels of the singular integral equations . 
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the normal and shear components of the stress intensity 

factor at the interface . 
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length of the cracks , i = 1 , 2  . 
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Jacobi polynomial. 

= h 2 / h 1 .  

radius of neutral surface of the cylinder. 

the collocation points . 
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initial temperature . 
temperature at the boundary at any time. 

time. 
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stress components , i , j = x , y  , z  . 
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2 xL/E2=0.01108 , To=roD,/h, , ooT=- a; E ,  o0/(1 -vl) 
(material pair A) 

Figure 6-65: The influence of T~ on the normalized stress intensity 
factor k(bl) as a function of nondimensional time T for an 
edge crack of length Z,/h,=0.2 in Model II , $/h1=3.0 , 
Ri/L=9.0 and xL/E2=0.01108 , To=roD,/h: , 
ooT=- a; E ,  Oo/(l -vl) (material pair A) 

Figure 6-66: The influence of T~ on the normalized stress intensity 
factor k(b l )  as a function of nondimensional time T for an 
edge crack of length l,/h,=0.9 in Model II , h,/hl=3.0 , 
Ri/L=9.0 and xL/E2=0.01108 , To=toDl/h: , 
ooT=- ai E ,  Oo/(l -vl) (material pair A) 

function of nondimensional time T for an edge crack in 
Model I1 for T,=O.O , h2/h,=9.0 , Ri/L=9.0 and 
~L/E,=0.01108 , To=roD,/h: , boT=- a; EIOo/(l-vl) 
(material pair A) 

function of nondimensional time T for an edge crack in 
Model I1 for ~ ~ = 1 0 . 0  , %/h,=9.0 , Ri/L=9.0 and 
xL/E2=0.01108 , Zo=roD,/h, 2 , bo T-- - a’ , E , o / ( I-v,) 
(material pair A) 

Figure 6-69: The influence of T~ on the normalized stress intensity 
factor k(b l )  as a function of nondimensional time z for an 
edge crack of length I,/h,=0.2 in Model 11 , h2/h1=9.0 , 
Ri/L=9.0 and xL/E2=o.01108 , ~ o = r o D , / h ,  , 
bor=- ai E ,  Oo/(l -vl) (material pair A) 

Figure 6-70: The influence of T~ on the normalized stress intensity 
factor k ( b l )  as a function of nondimensional t h e  T for an 
edge crack of length I,/h,=0.9 in Model I1 , h,/h,=9.0 , 
Ri/L=9.0 and xL/E2=0.01108 , zO=foDl/h: , 
oOT=- a; E ,  Oo/(I-vl) (material pair A) 

Figure 6-71: The normalized stress intensity factor k(bl)  as a function 
of nondimensional time T for an edge crack in Model I1 
for T ~ = O . O  , h,/h1=24.0 , Ri/L=9.0 and xL/E2=0.01108 , 
-ro=roDl/h:, o o ~ = -  a; E , O ~ / ( I - ~ , )  (material pair A) 

function of nondimensional time T for an edge crack in 
Model I1 for .r0=20.0 , %/h1=24.0 , Ri/L=9.0 and 

Figure 6-67: The normalized stress intensity factor k(b l )  as a 

Figure 6-68: The normalized stress intensity factor k(bl)  as a 
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Figure 6-72: The normalized stress intensity factor k(bl)  as a 

xL/E2=0.01108 , zo=roDl/hl 2 , boT=- a; EIOo/(l-vl) 
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(material pair A) 
Figure 6-73: The influence of T~ on the normalized stress intensity 

factor k(bl )  as a function of nondimensional time T for an 
edge crack of length l,/h,=0.2 in Model I1 , $/h,=24.0 , 
Ri/L=9.0 and xL/E2=0.01108 , To=toDl/h: , 
oOT=- ai El Oo/(l -vl) (material pair A) 

Figure 6-74: The influence of 70 on the normalized stress intensity 
factor k ( b l )  as a function of nondimensional time T for an 
edge crack of length ll/h,=0.9 in Model I1 , $/h1=24.O , 
Ri/L=9.0 and xL/E2=0.01108 , To=toDl/hf , 
oo T--a- - , E , 0 o/(l-vl) (material pair A) 

Figure 6-75: The influence of z0 on the normalized stress intensity 
factor k ( b l )  as a function of nondimensional time T for a 
broken clad in Model I1 h2/h1=3.0  , Ri/L=9.0 and 

2 xL/E2=0.01108 , To=roDl/hl , boT=- a; E ,  Oo/(l -vl) 
(material pair A) 

Figure 6-76: The influence of T~ on the normalized stress intensity 
factor k(bl)  as a function of nondimensional time T for a 
broken clad in Model I1 h,/h,=9.0 , Ri/L=9.0 and 
xL/E2=0.01108 , To=roDl/h: , ooT=-a; E,OO/(l-v,) 
(material pair A) 

Figure 6-77: The influence of T~ on the normalized stress intensity 
factor k(bl)  as a function of nondimensional time T for a 
broken clad in Model I1 h,/h,=24.0 , Ri/L=9.0 and 
xL/E2=0.01108 , To=roDl/h: , boT=- a; El@o/(l-vl) 
(material pair A) 

Figure 6-78: The influence of T~ on the normalized stress intensity 
factor k ( 3 )  as a function of nondimensional time T for an 
under-clad crack of length 12/h1=0.004 in Model I1 

ooT=- ai El Oo/(l -vl) (material pair A) 
Figure 6-79: The influence of T~ on the normalized stress intensity 

factor k(b2) as a function of nondimensional time T for a 
fixed under-clad crack length Z2/hl=0.004 in Model I1 
h,/h1=3.0, Ri/L=9.0 and xL/E2=0.01108 , To=toDl/h: , 
oOT=- ai E ,  Oo/(l -vl) (material pair A) 

function of nondimensional time T for an under-clad 
crack in Model I1 for zo=0.O , b/h,=9.0 , Ri/L=9.0 and 

xL/E2=0.01108 , To=foDl/h:  , boT=- ai E ,  Oo/(1 -VI> 

2 h,/h1=3.O , Ri jLz9 .0  and ~L/E2=0.01108 , T o = t o D l / h ,  , 

Figure 6-80: The normalized stress intensity factor k(a2) as a 
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.(material pair A) 
Figure 6-81: The normalized stress intensity factor k(b2) as a function 

of nondimensional time I: for an under-clad crack in 
Model I1 for 1:~=0.0 , b / h l = 9 . 0  , Ri/L=9.0 and 
xL/E2=0.01108 , 70°'toDl/hl , ooT=- a; E, o0/(1 -vl) 
.(material pair A) 

function of nondimensional time I: for an under-clad 
crack in Model 11 for .so=10.O, h2/h,=9.0 , Ri/L=9.0 and 

XL/E2=O.O1108 , I:o=foDl/hl  , GOT=- ai E ,  Oo/(1 -VI) 
.( material pair A) 

function of nondimensional time I: for an under-clad 
crack in Model 11 for .so=10.O, h2/h,=9.0, Ri/L=9.0 and 
xL/E2=0.01108 , To=foD,/ht  , oOT=- a; EIOo/(l-vl) 
.(material pair A) 

Figure 6-84: The influence of I:~ on the normalized stress intensity 
factor k(3) as a function of nondimensional time T: for an 
under-clad crack of length 12/h,=1.0 in Model I1 
h2/h,=9.0 , Rj/L=9.0 and xL/E2=0.01108 , I:o=toDl/h: , 
ooT=- ai E, Oo/( l  -vl) (material pair A) 

Figure 6-85: The influence of T : ~  on the normalized stress intensity 
factor k(b2) as a function of nondimensional time T for an 
under-clad crack of length 12/h,=1.0 in Model I1 
%/hl=9.0 , Ri/L=9.0 and xL/E2=0.01108 , To=foDl /h t  , 
ooT=- ai E, Oo/( l  -vl) (material pair A) 

Figure 6-86: The influence of z0 on the normalized stress intensity 
factor k(3) as a function of nondimensional time I: for an 
under-clad crack of length 12/h,=3.0 in Model I1 

cor=- ai E, Oo/(l -vl) (material pair A) 
Figure 6-87: The influence of I:~ on the normalized stress intensity 

factor k(b2) as a function of nondimensional time I: for an 
under-clad crack of length 12/hl=3.0 in Model I1 
b/h,=9.0 , Rj/L=9.0 and xL/E2=0.01108 , I:o=toDl/h: , 
ooT=- ai E, Oo/( l  -vl) (material pair A) 

Figure 6-88: The normalized stress intensity factor k(3) , k(b2) as a 
function of nondimensional time I: for under-clad crack 
in Model I1 for 12/h,=9.0, .so=0.O, b / h , = 2 4 . 0  , Ri/L=9.0 

and xL/E2=0.01108 , I:o=foDl/h, , ooT=- ai E, Oo/(l -vl) 
.(material pair A) 
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Figure 6-82: The normalized stress intensity factor k(%) as a 
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Figure 6-83: The normalized stress intensity factor k(b2) as a 
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Figure 6-89: The normalized stress intensity factor k(b2) as a 
function of nondimensional time z for an under-clad 
crack in Model II for zo=O.O, $/h,=24.0 , Ri/L=9.0 and 

xL/E2=0.01108 , zo=roDl/ht , ooT=- a; El@o/(l-vl) 
.(material pair A) 

Figure 6-90 The normalized stress intensity factor k(9) , R(b2) as a 
function of nondimensional time r for an under-clad 
crack in Model I1 for Z2/h,=9.0 , r0=20.0 , $/h,=24.0 , 

ooT=- a; E, Oo/(l -vl) .(material pair A) 
Figure 6-91: The normalized stress intensity factor k(b2) as a function 

of nondimensional time z for an under-clad crack in 
Model I1 for .t0=20.0 , $/h1=24.0 , Ri/L=9.0 and 
~L/E2=o.01108 , z0=toDl/h: , oOT=- ai El@o/(l-vl) 
.(material pair A) 

Figure 6-92: The influence of zo on the normalized stress intensity 
Eactor k(a;?) as a function of nondimensional time .t for an 
under-clad crack of length Z2/h,=0.5 in Model 11, 
h2/h1=24.0 , Ri/L=9.0 and xL/E2=0.01108 , zo=toDl/h: , 
ooT=- ai E, Oo/(l -vl) (material pair A) 

Figure 6-93: The influence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for an 
under-clad crack of  length 12/h1=0.5 in Model 11, 
h/h1=24.0 , Ri/L=9.0 and xL/E2=0.01108 , zo=toDl/h: , 
ooT=- a; E ,  Oo/(l -vl) (material pair A) 

Figure 6-94: The influence of T~ on the normalized stress intensity 
factor k(3) as a function of nondimensional time ‘I: for an 
under-clad crack of length l2/hl=4.0 in Model 11, 

ooT=- ai El Oo/(l -vl) (material pair A) 
Figure 6-95: The influence of zo on the normalized stress intensity 

factor k(b2) as a function of nondimensional time r for an 
under-clad crack of length 12/h,=4.0 in Model 11, 

ooT=- ai E, Oo/(l-v,) (material pair A) 
Figure 6-96: The normalized stress intensity factor k(b2) as a 

function of nondimensional time z for an edge crack 
crossing the interface in Model 11 for zo=O.O , h,/h1=3.0 , 
Rj/L=9.0 and xL/E2=0.01108 , zo=toDl/h: , 
oOT=- ai E, @,/(I -v,) (material pair A) 

2 Ri/L=9.0 and xL/E2=O.O11O8 , To=toDl/h1 , 

2 h,/h1=24.0, Ri/L=9.0 and xL/E~=0.01108 , TO=toDi/hl , 

2 
b/h,=24.O,  Rj/L=9.0 and xL/E2=O.O11O8 , To=toD1/h, , 
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Figure 6-97: The normalized stress intensity factor k(b2) as a 
function of nondimensional time z for an edge crack 
crossing the interface in Model 11 for z0=6.0 , $/hl=3.0 , 
Ri/L=9.0 and xL/E2=0.01108 , b=toDl /h:  , 
ooT=- ai E ,  Oo/(l -vl) (material pair A) 

Figure 6-98: The influence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for an 
edge crack of length Z/h,=1.2 crossing the interface in 
Model I1 , $/h ,=3 .0  , Ri/L=9.0 and xL/E2=0.01108 , 
zo=toD,/hl , q,T=- a; EIOo/(l -vl) (material pair A) 

Figure 6-99: The influence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for an 
edge crack of length f /h ,=2 .0  crossing the interface in 
Model 11 , 4/h1=3.0 , Ri/L=9.0 and xL/E2=0.01108 , 
~ o = r o D , / h ,  , ooT=- a; EIOo/(l-vl) (material pair A) 

Figure 6-100: The normalized stress intensity factor k(b2) as a 

2 

2 

function of nondimensional time T for an edge crack 
crossing the interface in Model I1 for T ~ = O . O  , h 2 / h ,  =9.0 

, Ri/L=9.0 and xL/E2=0.01108 , To=toD,/h: , 
ooT=- cx; E ,  Oo/(l -vl) (material pair A) 

Figure 6-101: The normalized stress intensity factor k(b2) as a 
function of nondimensional time ‘5: for an edge crack 
crossing the interface in Model I1 for zo=lO.O , 
%/hl=9.0 , Ri/L=9.0 and xL/E2=o.01108 , To=toDl/hl , 

Figure 6-102: The influence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for 
an edge crack of length f /hl  = 1.5 crossing the interface 
in Model 11, b / h , = 9 . 0 ,  Ri/L=9.0 and xL/E2=0.01108 , 
zo=roD,/h,, croT=- a; EIOo/( l -v~)  (material pair A) 

Figure 6-103: The influence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for 
an edge crack of length 1 /hl =4.0 crossing the interface 
in Model 11, $/h,=9.0, Ri/L=9.0 and xL/E2=0.01108 , 
z o = t o D l / h ~ ,  o o * = - a i ~ l ~ o / ( l - v l ) ( m a t e r i ~ p a i r ~ )  

Figure 6-104: The normalized stress intensity factor k(b2) as a 
function of nondimensional time z for an edge crack 
crossing the interface in Model II for zo=O.O , 

2 

ai E ,  Oo/(l -vl) (material pair A) 

2 

2 b / h l = 2 4 . O ,  Ri/L=9.0 and xL/E2=O.O11O8, To=toD,/h, , 
0oT=- a; E ,  @*/(I -v,) (material pair A) 
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Figure 6-105: The normalized stress intensity factor k(b2) as a 
function of nondimensional time z for an edge crack 
crossing the interface in Model I1 for ~ , = 2 0 . 0  , 

2 h, /h1=24.0 ,  Ri/L=9.0 and xL/E2=0.01108, Zo=toDl/hl , 
GOT=- ai E, Oo/(l -vl) (material pair A) 

Figure 6-106: The influence of T~ on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for 
an edge crack of length I/hl = 1.5 crossing the interface 
in Model 11, $/hl=24.0,  Ri/L=9.0 and xL/E2=0.01108 , 
~o=toDl /h l  , ooT=- a; E ,  Oo/(l -vl) (material pair A) 

Figure 6-107: The influence of ro on the normalized stress intensity 
factor k(b2) as a function of nondimensional time z for 
an edge crack of length I/h,=5.0 crossing the interface 
in Model I1 , h2/h,=24.0, Rj/L=9.0 and xL/E2=0.01108 , 
To=toD,/h:, ooT=- a; El@o/(l-vl) (material pair A) 

Figure 6-108: The normalized transient temperature distribution in 
Model I1 for .r,=O.O, $ /h l=9 .0 ,  ~ o = r o D l / h ,  , (material 
pair B) 

Figure 6-109: The normalized transient stress distribution on/oOT in 
Model I1 for zo=0.O , b / h l = 9 . 0  , ~ o = t o D , / h ~  , 
boT=- a; E ,  @,/(l -vl). (material pair B) 

Figure 6-110: The normalized transient temperature distribution in 
Model I1 for zO=6.O, h2/h,=9.0, ‘50=foD,/hl , (material 
pair B) 

Figure 6-111: The normalized transient stress distribution o,,Joo* in 
Model I1 for 7,=6.O , b/h,=9.0 , ZO=toDl/hl , 
ooT=- ai E, eo/(1-vl). (material pair B) 

Figure 6-112: The normalized transient temperature distribution in 
Model I1 for ~,=10.0, h,/hl=9.0,  ~ O = r o D l / h l  , (material 
pair B) 

.Figure 6-113: The normalized transient stress distribution o,,,,/ooT in 
Model I1 for ~ ~ = 1 0 . 0  , &/h,=9.0 , ~ o = t o D l / h ~  , 
.o‘= - ai E, Oo/(l -vl). (material pair B) 

Figure 6-1 14: The normalized transient temperature distribution in 
Model I1 for .c,=20.0, $/h l=9.0 ,  ~ o = r o D , / h ,  , (material 
pair B) 

Figure 6-115: The normalized transient stress distribution on/ooT in 
Model I1 for ~ ~ = 2 0 . 0  , &/h,=9.0 , Zo=toDl/h: , 
ooT=- ai El  Oo/(l -v,). (material pair B) 

Figure 6-116: The normalized stress intensity factor k(bl)  as a 
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function of nondimensional time T for an edge crack in 
Model I1 for ‘E,=O.O ) b/h1=9.0 , Ri/L=9.0 and 

(material pair B) 

function of nondimensional time T for an edge crack in 
Model I1 for ~,=10.0 ) )r2/hl=9.0 , Ri/L=9.0 and 
xL/E2=0.01185 , ‘ E , = t , ~ , / h ~  , aOT=- a; E ~ O , / ( I - ~ , )  
(material pair B) 

Figure 6-118: The influence of ‘E, on the normalized stress intensity 
factor k(bl )  as a function of nondimensional time ‘E for 
an edge crack of length Z,/h1=0.2 in Model 11 ) 

$/h1=9.0 ) Ri/L=9.0 and xL/E2=0.01185 ) To=toD,/h, ) 

GOT= - a; E ,  Oo/(l -vl) (material pair B) 
Figure 6-119: The influence of ‘E, on the normalized stress intensity 

factor k ( b l )  as a function of nondimensional time T for a 
broken clad in Model I1 for p,=0.552538 , h2/h,=9.0 ) 

Ri/L=9.0 and xL/E2=0.01185 , fo=toDl/h: ) 

CY,*=- ai E, Oo/(l -vl) (material pair B) 
Figure 6-120: The normalized stress intensity factor k(a2) as a 

function of nondimensional time ‘E for an under-clad 
crack in Model 11 for %=0.4512416 ) ~,=0.0 ) b /h1=9 .0 ,  

Ri/L=9.0 and xL/E2=0.01185 ) To=toDl/h: ) 

ooT=- ai E, Oo/(l -vl) .(material pair B) 
Figure 6-121: The normalized stress intensity factor k(b2) as a 

function of nondimensional time T for an under-clad 
crack in Model I1 for $=0.4512416, T,=O.O ) h,/hl=9.0 ) 

Ri/L=9.0 and xL/E2=0.01185 , To=toDl/h: ) 

ooT=- ai E, Oo/(l -vl) .(material pair B) 
Figure 6-122: The normalized stress intensity factor k(u2) as a 

function of nondimensional time ‘E for an under-clad 
crack in Model I1 for %=0.4512416, zo=10.O, b /h l=9 .0  

, Ri/L=9.0 and xL/E2=0.01185 ) To=toDl/h: , 
oo*=- ai E, Oo/(l -vl) .(material pair B) 

Figure 6-123: The normalized stress intensity factor k(b2) as a 
function of nondimensional time ‘E for an under-clad 
crack in Model I1 for $=0.4512416 , T,= 10.0 , h,/h1=9.0 

) Ri/L=9.0 and xL/E2=O.01185 , To=toDl/hl ) 

ooT=- ai E, Oo/(l -vl) .(material pair B) 
Figure 6-124: The influence of ‘E, on the normalized stress intensity 

XL/E2=O.O1185 , To=toDl/h: ) ooT=- ai E1Oo/(l-V1) 

Figure 6-117: The normalized stress intensity factor k(b l )  as a 
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factor k(u2) as a function of nondimensional time t for 
an under-clad crack of length 12/h,=1.0 in Model 11, 
%=0.4512416 h/h,=9.0,  Ri/L=9.0 and xL/E2=0.01185 , 
ro=roD,/h~, oar=- ai E, o0/(1 -v,)(material pair B) 

Figure 6-125: The innuence of zo on the normalized stress intensity 
factor k(b2) as a function of nondimensional time t for 
an under-clad crack of length Z2/h,=1.0 in Model I1 
%=0.4512416 %/h,=9.0, Ri/L=9.0 and xL/E2=0.01185 , 
to=foDl/h:, ooT=- a; E, Oo/(l -v,)(material pair B) 

Figure 6-126: The normalized stress intensity factor k, as a function 
of nondimensional time t for an edge crack crossing the 
interface in Model 11 for p,=a,=0.0187223 ,ro=O.O , 

oOT=- ai E, Oo/(l -vl) . (material pair B) 
Figure 6-127: The normalized stress intensity factor kV as a function 

.of nondimensional time z for an edge crack crossing the 
interface in Model I1 for p1=cc,=0.Ol87223 , zo=O.O , 
h,/h,=9.0 , R,/L=9.0 and xL/E2=0.01185 , To=toD,/h,  , 
oOT=- ai E, Oo/(l  -vl) . (material pair B) 

function of nondimensional time z for an edge crack 
crossing the interface in Model I1 for p1 = cc, =0.0187223 , 
to=O.O , h,/hl=9.0 , Ri/L=9.0 and ~L/E2=0.01185 , 
to=toDl/hl  , ooT=- a; EIOo/(l -vl), (material pair B) 

Figure 6-129: The normalized stress intensity factor k, as a function 
of nondimensional time z for an edge crack crossing the 
interface in Model I1 for p1=a,=O.0l87223 , t o = l O . O  , 
h,/hl=9.0 , Ri/L=9.0 and xL/E2=0.01185 , ro=foDl/ht  , 
0oT=- CXi El  O0/(1 -vl) . (material pair B) 

Figure 6-130: The normalized stress intensity factor kV as a function 
of nondimensional time t for an edge crack crossing the 
interface in Model I1 for p1=a,=O.0l87223 , zo=lO.O , 
h2/h,=9.0 , Ri/L=9.0 and xL/E2=0.01185 , r0= toDl /h : ,  

(JOT=- ai E, Oo/(l -v,) . (material pair B) 

function of nondimensional time r for an edge crack 
crossing the interface in Model I1 for p1 =%=0.0187223 , 

t0=f0D1/h1, GOT=- ai E, Oo/(l -vl). (material pair B) 

2 %/h,=9.0 , Ri/L=9.0 and xL/E2=0.01185 , To=toD,/h,  , 

2 

Figure 6-128: The normalized stress intensity factor k(b2) as a 
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Figure 6-131: The normalized stress intensity factor k(b2) as a 

Z o = l O . O  , h,/h1=9.0 , Ri/L=9.0 and xL/E2=O.O1185 , 
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Figure 6-132: The influence of to on the normalized stress intensity 
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factor k, as a function of nondimensional time z for an 
edge crack of length f/hl = 1.5 crossing the interface, in 
Model 11 for /31=~=0.01872238 ) %/hl=9.0 , Ri/L=9.0 

. (material pair B) 
Figure 6-133: The influence of zo on the normalized stress intensity 

factor kT as a function of nondimensional time z for an 
edge crack of length l / h ,  = 1.5 crossing the interface , in 
Model 11 for /31=~=0.01872238 ) h,/h,=9.0 , Ri/L=9.0 

ao*=- ai El Oo/(l -vl) . (material pair B) 
Figure 6-134: The influence of zo on the normalized stress intensity 

factor k(b2) as a function of nondimensional time z for 
an edge crack of length l / h ,  = 1.5 crossing the interface , 
in Model I1 for p1=a,=0.01872238 ) $ /h l=9 .0 ,  Ri/L=9.0 

boT=- CY; El Oo/(l -vl) . (material pair B) 

2 and XL/E2=0.01185, TO=toD,/hl ) 0o~=-aiE1OO/(l-~l) 
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elastic foundation x ,  Ri/L=9.0  and xL/E=0.01108, 7= tD/L2 ,  
ooT= - a* E o0/ ( 1  - v). 

Table 6-12: The maximum of normalized stress intensity factors for 
an under-clad crack subjected to transient thermal 
stresses, h2/h1=3.0,  Ri /L=9.0  and xL/E2=0.01108 . 
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(material pair A). 
Table 6-13: The maximum of normalized stress intensity factors for 

an  under-clad crack subjected to transient thermal 
stresses, $/hl=9.& Ri/L=9.0 and xL/E2=0.01108 . 
(material pair A). 

Table 6-14: The maximum of normalized stress intensity factors for 
an under-clad crack subjected to transient thermal 
stresses, $/h1=24.0, Ri/L=9.0 and xL/E2=0.01108 . 
(material pair A). 

Table 6-15: The marrimurn of normalized stress intensity factors for 
an  edge crack subjected to transient thermal stresses, 
h,//h1=3.0, Ri /L=9.0 and ~L/E2=0.01108 . (material pair 
A). 

Table 6-16: The maximum of normalized stress intensity factors for 
an edge crack subjected to transient thermal stresses, 
b / h l = 9 . 0 ,  Ri/L=9.0 and xL/E2=0.01108 . (material pair 
A). 

Table 6-17: The maximum of normalized stress intensity factors for 
an edge crack subjected to transient thermal stresses, 
h2/h ,=24.0 ,  Ri /L=9.0  and xL/E2=0.01108 . (material pair 
A). 
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ABSTRACT 
In many applications, such as nuclear pressure vessels, micro-electronics, 

and the chemical industry, the study of transient thermal stresses in layered 

cylinders and plates in the presence of a crack is required. In this study fist the 

cladded pressure vessel under thermal shock conditions which is simulated by 

using two simpler models. The frrst model (Model I) assumes that, if the crack 

size is very small compared to the vessel thickness, the problem can be treated 

as a semi-infinite elastic medium bonded to a very thin layer of different 

material. However, if the crack size is of the same order as the vessel thickness, 

the curvature effects may not be negligible. In this case it is assumed that the 

relatively thin walled hollow cylinder with cladding can be treated as a 

composite beam on an elastic foundation (Model 11). In both models, the effect of 

surface cooling rate is studied by assuming the temperature boundary condition 

to be a ramp function. Among the crack geometries considered are: the edge 

crack in the clad, the broken clad, the edge crack going through the interface, 

the under-clad crack in the base material, and an internal crack crossing the 

interface. 

The calculated results include the transient temperature, thermal stresses 

in the uncracked medium and stress intensity factors which are presented as a 

function of time, and the duration of cooling ramp . The stress intensity factors 

are also presented as a function of the size and the location of the crack. The 

problem is solved for two bonded materials of different thermal and mechanical 

properties. The mathematical formulation results in two singular integral 

equations which are solved numerically. The results are given for two material 

pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a 

ceramic coating on ferritic steel. In the case of the yielded clad, the stress 
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intensity factors for a crack under the clad are determined by using a plastic 

strip model and are compared with elastic clad results. When the results 

obtained are compared with the corresponding elasticity solution for the thick- 

walled cylinder, the agreement was found to be quite satisfactory. 

In the composite plate with finite thickness the calculated results indicate 

that the peak values of the stress intensity factors decrease with decreasing 

cooling rate of the surface. On the other hand, in the case of semi-infinite 

medium (Model I), since the medium is fully constrained at  infiity, the 

maximum values of the stress intensity factors are attained at steady state. 

The technique developed and the dimensionless results given in this study 

are , of course, applicable to any composite plate that is locally subjected to 

thermal shock. 
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Chapter 1 
INTRODUCTION 

It is known that the cladding, when bonded to the inner wall of pressure 

vessels or pipes, can be very effective in protecting the base metal from severe 

corrosion. In the nuclear pressure vessels the cladding serves the additional 

purpose of protecting the base metal from radiation damage. In some other 

applications, as in micro-electronics and the chemical industry where coating is 

used very widely, the study of residual stresses and transient thermal stresses 

in layered cylinders and plates is required. 

Our aim in this work is to study the structural integrity of cladded 

materials under severe thermal transient stresses in the presence of pre- 

existing flaws. These flaws may be due to imperfections such as voids, 

inclusions, or weld defects, which are generally treated as cracks. In case of 

pressure vessels with cladding, the cracks have been observed underneath the 

clad oriented in a plane perpendicular to the cylinder axis and terminating at  

the interface. 

In analyzing the subcritical crack growth in homogeneous materials, it is 

generally accepted that the stress intensity factor can be used quite effectively 

as a correlation parameter. The objective of this study is therefore to investigate 

the effect of the clad on the stress intensity factors in the case of a crack 

perpendicular to the interface under transient thermal stresses. Once we know 

the stress intensity factor, we could also determine whether catastrophic failure 

will occur in brittle materials due to unstable crack propagation. 

The thermal shock problem for a circumferentially cracked hollow cylinder 

with cladding was considered by Nied [l] for two special crack configurations. 

First, the circumferential crack embedded in the base metal, where the crack tip 
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is located just underneath the clad. Second, the edge crack which completely 

passes through the clad. His basic assumptions were 
1. The problem is axisymmetric for both crack geometry and 

2. The change in surface temperature is a unit step function. 

3. The transient thermal stress is quasi-static, i.e, the inertia effects 
are negligible. 

4.The materials are assumed to be isotropic, homogeneous, and 
linearly elastic such that the clad and the base material have the 
same elastic modulus and Poisson’s ratio. i.e, E, = E2 , v1 = v2 , but 
non-homogeneous in thermal properties. 

5. If the cladding is sufficiently ductile, during a thermal transient, 
the cladding may yield. In this case the clad is examined by using a 
plastic strip model, which assumes that the clad is perfectly 
plastic. 

temperature boundary conditions. 

Now, by assuming an extremely severe temperature change at  the inner 

wall of the cylinder, i.e., a step change in the inner wall temperature, he 

obtained a peak value of thermal stresses. These stresses should be lower if one 

assumes a more realistic temperature boundary condition. Erdogan [21 

compared two sets of data to show the effect of the temperature boundary 

condition at  the inner wall of a vessel without cladding, first set for a 

homogeneous vessel which contains a circumferential edge crack on the inner 

wall obtained from [3] where a step change in temperature is used as the 

boundary condition, and the second set for the same problem where a smoother 

temperature boundary condition obtained from [4] was used. He showed a 

significant difference between the two sets. Hence, a reduction in the stress 

intensity factors in Nied’s results would occur if we repeat his work with more 

realistic temperature boundary condition. 

The main objective of this work is to solve the crack problem under 

transient thermal stresses with temperature boundary conditions a t  the inner 

wall of the cylinder that are somewhat more realistic than the step function 
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temperature used in previous studies as shown in Figure 1.1.c , and provided 

that the clad and the base materials have different thermal and mechanical 

properties. 

The actual problem is a very complicated three-dimensional problem and 

seems to be analytically intractable. So, we are going to simulate the problem by 

using two simpler models depending on the crack size. 

Model I 
Since the clad has a relatively small thickness, the base material has a 

large bulk, and the radius of the cylinder is large, the total strains in axial and 

circumferential directions would be nearly zero during transient heating or 

cooling. Also, since the surfaces of the cylinder are stress free, the radial 

stresses would also be negligible small. Thus, in case of a crack that is very 

small in size compared to the other dimensions, the problem can be treated as a 

semi-infinite elastic medium (base) bonded to a surface layer of different 

material (clad) of thickness h, shown in Figure 1.l.a (see for example [2]). In 

some other applications, this model can also be applied to certain micro- 

electronic devices and ceramic coated metal parts consisting of a relatively thin 

coating bonded to an elastic substrate and subjected to rapidly changing 

thermal environments. 

Model II 
In the case of a relatively large crack size, the more realistic model for 

thin walled hollow cylinders with cladding would be a composite beam on an 

elastic foundation in which the modulus of the foundation x is a function of the 

thickness of the cylinder wall, the radius of the cylinder, and the modulus of 

elasticity, see [51. The problem of interest is depicted in Figure 1.l.b. This 

model can also be used in other cases such as, for example, a fully or partially 

constrained composite plate in which the effect of the constraints can be 
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elastic 
1 2 

clad base metal 

t 0  t 

Figure 1-1: a-The geometry for Model I, b-The geometry for Model 11, c-The 
temperature boundary condition at the inner wall. 

represented by an elastic foundation. 

In recent years the results of various studies on the fracture mechanics of 

layered composites appeared in literature. These studies were concerned with 

interface cracks, cracks perpendicular to the interface, cracks terminating at the 

interface, and cracks crossing the interface. The singular behavior of stresses 

around a crack at the interface of two elastic half-planes of dissimilar material 

are examined by Williams [6]. Rice and Sih [7] considered a finite crack at an 

interface of two joined materials subjected to both symmetric and skew- 

symmetric in-plane loading. Also, the interface crack problem under '%endingtt 

was reported by Sih and Rice [8]. Stress distribution of two half-planes bonded 

to each other containing cracks along the bond was considered by England [91 

and Erdogan [lo]. The interface crack problem in multi-layered material has 

also been studied by Erdogan and Gupta [ll]. Stress distribution in case of 

penny-shaped cracks lying between two bonded half-spaces are reported by 

Lowengrub and Sneddon [12], Lowengrub [13], and Willes [141. A more 

generalized situation corresponds to the case of interface cracks lying on a 
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circular arc was considered by Perlman and Sih [15,161. 

Khrapkov [17], and Cook and Erdogan [18] have considered the problem of 

a crack normal to a bimaterial interface. The case of a laminated composite 

containing a broken lamina was investigated by Ashbaugh [191 and Gupta [201. 

Erdogan [211 has investigated the singular nature of the crack tip stress field in 

a non-homogeneous medium having a shear modulus with a discontinuous 

derivative for the antiplane shear loading of two bonded half spaces in which 

the crack is perpendicular to the interface. The fracture problem of a single 

layer of dissimilar material with a crack normal to the interface between two 

other layers of infinite height was considered by Hilton and Sih [221, Bogy [231, 

and Arin [24], while a crack parallel to the interface was considered by Hilton 

and Sih [251. The anti-plane shear case was treated by Chen and Sih 1261. The 

same problem with penny-shaped crack under normal extension was solved by 

Arin and Erdogan [27] and torsion by Sih and Chen 1281. 

A crack going through the interface in two bonded half planes was 

investigated by Erdogan and Biricikoglu [29]. Erdogan and Cook [301 considered 

antiplane shear cracks terminating at and going through the interface. The 

fracture problem of a composite plate which consists of a bonded parallel load 

carrying laminates and buffer strips, and its limiting case of the collinear cracks 

joining and forming a stress-free end have been considered by Erdogan and 

Bakioglu [31 , 321. Also, Delale and Erdogan [33] considered the same problem 

but for orthotropic materials. Goree and Venezia [34] have investigated the 

bonded elastic half-planes with an interface crack and a crack perpendicular to 

the interface. The problem of two bonded semi-infinite elastic media with a 

crack in one of the half-planes lying parallel to, and at an arbitrary distance 

from the interface has been investigated by Erdogan [34]. A summary and 

discussion of the various modes of cracks in composite material has been 
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reported by Erdogan [36]. 

The problem considered can be solved by the superposition technique as 

shown in Figure 1.2. Once the temperature distribution is known, the thermal 

stresses for uncracked problem can be obtained. The perturbation problem 

(mixed boundary value problem) can then be formulated by using the thermal 

stresses from uncracked problem, but with opposite sign, as the crack surface 

traction along the line of the crack. 

I 

thermal stresses - thermal stresses 

T U 

uncracked problem 

+ 

perturbation problem 

Figure 1-2: The superposition 

First, the problem of cracks fully embedded into the homogeneous strips, 

perpendicular to the interface is considered. A general formulation of the 

perturbation problem is given for plane strain and generalized plane stress 

cases by the use of Fourier Integral Transform. The singular behavior of the 

stresses for different crack geometries is studied in some detail by using the 

Muskhelishvili Technique [37]. In cases where the crack terminates a t  the 

interface, or goes through the interface, the stress singularity is a function of 

material constants as well as the intersection angle. 

The resulting system of singular integral equations is solved numerically 

by using the technique described in [38 , 391. The stress intensity factors are 

calculated as functions of time and dimensions concerning the size and location 
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of the crack for various crack geometries and for two materials combinations 

described in Table 6-1. Also, in order to study the influence of the thermal 

boundary conditions on the stress intensity factor, the increase in time of the 

surface temperature is assumed to be an additional variable. 
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Chapter 2 
ANALYSIS OF THE PROBLEM 

2.1 Model I- Semi-infinite elastic medium (base metal) 

bonded to a surface layer of different material (clad) 

2.1.1 Temperature distribution 

2.1.1.1 Unit step function at the boundary 

clad base metal 

Figure 2-1: a-Geometry of the problem (Model I) b-Temperature boundary 

Figure 2-l(a) represents the problem of interest, where x’ is measured 

from the interface of the two materials, and Figure 2-l(b) represents the 

temperature change at  the boundary. Let D ,  , ki and D ,  , kh are the thermal 

diffusivity and thermal conductivity for the clad (1) and base (2), respectively. 

So, the differential equations for materials 1,2 are : 

condition (unit step function) 
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where TI and T2 are the temperatures in materials 1 ,2  respectively. The initial 

and boundary conditions are 

Tl(x*,O) = T2(~9,0) = T, , 

lim T2(x9,t) = T, , 
E + -  

where T, is the initial temperature for both materials 1, 2, and To is the 

temperature a t  the ,boundary at any time t > 0, and H(t) is the Heaviside step 

function. Condition (2.2)(c) implies perfect heat transfer at the interface (xq =O). 

Let, 

Ol(x*,t)=Tl(x~,t)-T, , 

Then, the two differential equations (2.1) can be written as 

a2 O,(X~,t) 1 a O,(x*,t) 

3 x 2  D ,  at  
- -- , - h < X ~ < O , f > O ,  

Also, the initial and boundary conditions (2.2) become 
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Lim O,(x~,r) = 0 ,  
f i+ -  

O1(-h,t) = OoH(t). (e 1 

By applying Laplace Transform to the partial differential equations (2.4) with 

respect to t ,  and by using condition (2.5)(a), they may be reduced to two ordinary 

differential equations of the form 

where 

The integral transform is defined by 

The general solutions of (2.6) are 

- 
02(x9p) = A2(p) @F + B 2 ( p ) e 9 P .  

(a 1 

(2.9) 

(b 1 
where, AI@), B1@), A,@), B2@) are unknown funcyions to be determined from 

conditions (2.5)(b-e). By applying Laplace Transform to the conditions (2.5)(b-e) 

we obtain 
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- 00 O,(-h,p) = -. 
P 

After substitution of the conditions (2.10)(b-e), and determination of the 

constants AI@), Bl@), A2(p),  B&), the equations (2.9) become 

where 

- 0, [ coshqlx*-q sinhqlx-] 
O1(x9g) = 

p [coshqlh+qsinhqlh]  ’ 

(2.11) 

(2.12) 

The temperature distribution O1(x,t) , 02(x,t) can be obtained by applying 

the Inversion Theorem of Laplace Transform on equations (2.111, i.e, 
0, [ cosh Clx- -q sinh C1x- ] 

z [ cosh Slh +q sinh ( , h ]  elz dz , (a 1 

(2.13) 

where 

Since, the functions ( e - d G x )  and (sinhd-h) are double-valued 
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functions when he angle in the complex domain is changed fr m 0 to 2rc, the 

integrands in (2.13) have a branch point at z = 0, and the integration contour 

should be as shown in Figure 2-2. 

Figure 2-2: Contour for evaluating the integrals in eqns. (2.13) 

So, applying the Residue Theorem in equations (2.13), and using the 

contour integral r shown in Figure 2-2, we obtain the following closed form 

solutions for O1(x*, t )  , 02(x9, t )  

6 = 4 D , / D 2  . 
Defining now the Fourier Number T and the dimensionless parameters by 

z = tD,/h2 , {* = h 5 ,  X* = (xv+h)/h . (2.16) 

equations (2.15) become 
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2.1.1.2 Ramp function at the boundary 

' t  

clad base metal 
I 
I L 

I 

t 

(4 (4 

Figure 2-3: a-Geometry of the problem (Model I) b-Temperature boundary 

Figure 2-3(a) represents the problem of interest, and Figure 2-3(b) 

represents the temperature change at the boundary. The differential equations 

for 1 , 2  are: 

condition (ramp function) 

The initial and the boundary conditions are: 
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lim O,(x*,r) = 0, 
X + -  

0 0  00 

*O *O 
O,(-h,t) = -ftH(f)--(f-fo)H('-fo).  

As before, by applying Laplace Transform to equations (2.18, and using 

the condition (2.19)(a), we will obtain two ordinary differential equations having 

the general solution of the form 

- 
O ~ ( X ~ J J )  = A ;(p) cash q l X *  + B  I @ )  sinh 41x9, (a) 

(2.20) 

(b ) 
- 
%(x$p) = A2(p) e4Tr + B ,  e - W  . 

where AI@), Bl@),  A2@), B2@), are unknown functions to  be determined from 

the conditions (2.19)(b-e). 

Now, applying Laplace Transform to the boundary conditions, we may 

have 

Then, by substituting from equation (2.20) into equation (2.21), and 
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solving for the constants Al(p), Bl(p), A,@), B2(p), we find 

(2.22) 

where 

It is clear that, Fll, F12, are the same as equations (2.11). 

By applying the convolution theorem to equations (2.22), we find 
t 

0 
Oj(xY,f) = blI(.s~)fl,i(t-T~) dT* ; (j = 1,2) . (2.24) 

where, 

1 
bll ( t )=b12(t)=L-1[Gll(p)]  =-[ l-H(t-tO)] . 

f0 

From (2.16), (2.24) and (2.25) it then follows that 

01(~*,7) = -+- T 2q jm(e-7; -  1 * 
00 To x 0 
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(2.26) 

( cos !sin ~ S ( X *  - 1) + q sin {cos {.S(x* - 1)) - d{v 

[ cos2 {.+ q2 sin2 b] k3 

where 

(2.27) 

2.1.2 Thermal stresses in uncracked problem 

Consider the plane strain problem in y and z directions as shown in 

Figure 2-4, i.e, 
E* = Eiyz - - Eiu = E& -eizZ=O - , ( i =  1,2) . (2.28) 

Since the temperatures Oj , (j = 1, 2) are functions of (x  , t ) ,  then the 

stresses are functions of (x  , t )  only. It is obvious that all the shear stresses are 

zero. Then, the equilibrium equation for each medium (ignoring the inertia 

effects) is : 
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Figure 2-4: Geometry of Model I (uncracked problem) 

Since, we have a stress-free boundary, i.e, o,(O , t )  = 0 , then, 
o,(x,t) = 0. 

So, the Hooke's Law becomes 
1 - a @ = - [ o  E )"-Vozzl' 

1 
-a0 =-[ozz-voyy] E . 

(2.29) 

(2.30) 

(2.3 1) 

(b) 

where a* is the coefficient of thermal expansion, E is the Young's modulus, and v 

is the Poisson's ratio of the material. From equations (2.31) we may have 

UEO on = ozz = -- 
( l -v)  - 

Then, the thermal stresses in materials 1, 2 are: 

(2.33) 

(2.32) 
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Let, 

Then, equations (2.33) become 

(2,34) 

2.1.3 Formulation of the crack problem (perturbation problem) 

0 

Figure 2-5: Crack geometry (Model I) 

Consider the two-dimensional composite medium shown in Figure 2-5, 

where each material contains a finite crack perpendicular to the interface. 

Because of symmetry, the problem wi l l  be considered for, 0 y c -. It can be 

shown that, the governing differential equations for the displacements in each 

medium are (Appendix A) 
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where u and u are x and y components of the displacement vector, respectively. 

~ = ( 3 - 4 v )  for plain strain, and ~ = ( 3 - v ) / ( l + v )  for generalized plane stress, v is 

Poisson's ratio. 

Assume that the solution of equations (2.36) may be expressed in terms of 

the following Fourier Integral, i.e, 

W,P) e 4  dp , (a 1 

(b ) 

2 -  
u(x,y) = --I, fTx,a)cosyada+- 

(2.37) 

Because u, u, are symmetric and antisymmetric with respect to y, respectively, 

the first term of u is a Cosine transform, and the first term of u is a Sine 

transform. The second terms in equations (2.37) represent the general Fourier 

transform. Substituting equations (2.37) into equations (2.36) we obtain a 

system of ordinary differential equations for the unknown functions f ,  h , g , k . 

(d) 
d4 d2 
-kb,P)-2p2-k(y,p)+p4 My$) = 0. 
dY4 d4;! 

The general solution of these four differential equations are: 
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g(x,a) = (C', + Cry> P+ (C3 + C4x) e-m, 

= ( ~ 1  + ~ g )  eA PI+ ( ~ 3  +DO) e-A PI ,  

h b , ~ )  = (0; + D;Y> eyl P I + (D' 3 + 02) e-yl I .  

(b ) 

(c) 

(4 

(2.39) 

where O <  a< OQ , -ea< P< OQ , y> 0. Ci and C;, ( i = l ,  ..., 4) are functions of the 

transform variable a and are linearly dependent. Similarly, Di and D;, (i= 1 ,..., 4) 

are functions of the transform variable P and are not independent. 

Since, u , u  are bounded as y + OQ, from (2.39) it follows that D,, D,, Di, D; 

must be zero. Thus, after eliminating C; and D; ( i = l ,  ..., 4;j=3,4) by using 

coupling relations, equations (2.39) may be written as 

f lx ,a)  = ( C, + C p ) P + (  C3 +C4x) e-m, 

g(x,a> = (<, -+ - C ~ X >  P + ( C, -5c4 + c4x) e-m , 
a a 

~(Y,P)  = ( D ~ + D ~ ) ~ - Y I P I ,  (c) (2.40) 

hO,P) = - 

(a 1 

(b ) K 

- i l  P I ( D 3  - x D 4  +Do) P I. (d 1 
I P I  P 

Defining, D4(P) = A@), the equations (2.40) (c,d) can be written in the form 

Hence the displacements u , u are in the form 
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(2.42) 

The stress-strain relations for plane-strain problem are 
2(1 -v) V axx=p- (E +-E 1, (1-2v) xx 1-v w 
2(1 -v) V a w = ’ l o  (E w +-E,), 1-v 

a*r = PY,. 
where p = E/2(l+v) is the shear modulus. 

Also, the strain-displacement relations are 
a U  
ax E,=-, 

By substituting equations (2.42) into equations (2.43) and (2.44, and 

is zero, we observing that at the plane of symmetry y = 0 the shear stress 

find 

*3 K+1 -MI=,-. (2.45) 

Equations (2.42), (2.43), (2.44), and (2.45) are valid for both materials. 

Therefore, the stresses and the displacement fields in terms of the Fourier 

Integral for each material may be expressed as 

Material (1) 0 5 x 5 h , 0 I y e 
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K 1 + 1  + (-C3a + C4{ -- ax} )  e-m] sin yada 
2 

K1 
a + (C3 - C, { ---x }) e-"a] sin y a d a  

(2.46) 

Material (2) h 5 x 5 Q) , 0 5 y c 00 

As x + - , u, U, CY=, CY,,,,, ow are bounded. Then 
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1 L - 1  

3 P'" 

(2.47) 

where the unknowns Ci,( i=l  ,...., 6 )  are functions of a, and Aj,(j=1,2) are 

functions of p, and are to be determined from the boundary and continuity 

conditions. 

The homogeneous boundary and continuity conditions of the problem 

described in Figure 2-5 are 
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(2.49) 
O,,,,,(x,O) = - C Z , ~ ( X )  ; a1 < X <  b, 

02,,,,(~,0) = - o ~ ~ ( x )  ; < x < b2 
1. (b 1 

where, qT, B~~ are the thermal stresses which can be determined from the 

uncracked problem. 

First, let us define the following density functions 
a 

ax O1(x) =-u1(x,0) ; ocxc h ,  (a 

If we substitute equations (2.50) into equations (2,46)(e) and (2.47)(e) we 

obtain 

(2.51) 

(b 

By applying Fourier inverse Transform, we have 

26 



From condition (2.49)(a), it may be seen that 
t$l(x)=O ; O < x < a l  b l < x < h ,  

t$2(x) = O  ; h e x <  a2 * b 2 < x < m .  

Then, A,, A, can be put in the form 

-2i ’ p ’ j b1 t$l(f ,) e-% df, , 
A 1 = r , + I p  al 

(2.53) 

(2.54) 

By applying the boundary conditions (2.48), and using Fourier Inverse 

Transforms and equations (2.54), with the help of the integration formulas given 

in Appendix (B), we find 
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(2.55) 

el@ 1 + 11'2 + B3 +e 12'4- B5 - e12'6 

-el@ 1 + e13C2+ B3 + e 14'4- B5 15'6 

where, B,  = Cla, B, = C3a, B, = C5a, m = p1/p2 and e's and bl's are given in 

Appendix (C). 

Equations (2.55) form a system of six equations in eight unknowns Ci , 
(i= 1 ,...., 6) , $j ,(j= 1 ,2). After lengthly calculations, we can solve the first six 

unknowns in terms of t$j, (j= 1 ,2). The results are presented in Appendix (C). 

The two unknowns i$j, (j= 1,2) can then be obtained by using the mixed 

boundary conditions (2.49)(b). Noting that 
o,,(x,O) = - 0 , q X )  ; a1 < x <  b, . (2.56) 

By substituting from equation (2.46)(b) and taking the limits y+O+ we 

have 

K1+3 
+(C3a-C4{-- ax}) e-nr]cosyada 

2 

(2.57) 

Or 
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(2.58) 

By using equation (2.54)(a) and taking the limit, the last integral of 

equation (2.58) will be equal to 

(2.59) 

Substituting into equation (2.581, and dividing by R ( K ~  + 1)/4p1 , we may 

have 

K 1 + 3  
+(C3a-C4{-- ax)) e--] da 2 

Similarly for the second condition (2.49)(b) we find 

ax}) e-xar da 
2 

(2.60) 

(2.61) 

Substituting for Ci , (i= 1 ,...., 6), from Appendix (C), we obtain the following 

singular integral equations for the unknowns Qj , (j= 1 ,2) : 
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where 

and 

% + 3  1 
+ [H6-(--ml)-H8] 2 D P i a }  , 

(2.62) 

(2.63) 

where Hj ,(j = 1,2 ,.... 11, 12), D, can be found in Appendix (C). 
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For internal cracks, i.e, al > 0 , b ,  < h , a2 > h , b, < 00 it can be shown 

that the kernels kii ,  (i , j =  1 ,2) , are bounded for any combination of the variables 

x j ,  tj , a, (j =1, 2). So, the two singular integral equations (2.62) and (2.63) are of 

the Cauchy-type. 
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2.2 Model II - Layered Medium on an Elastic Foundation 

2.2.1 Temperature distribution 

2.2.1.1 Unit step function at the boundary 

' t  T 

t 

Figure 2-6: a-Geometry of the problem (Model 11) b-Temperature boundary 

Consider two dissimilar infinite layers having thicknesses h, (coating) and 

h, (base material) as shown in Figure 2-6(a). Figure 2-6(b) shows the 

temperature change at the boundary. Let D, , k; , D, , ki be the thermal 

diffusivity and thermal conductivity for the coating and base, respectively. 

condition (unit step function) 

Then, the differential equations for 1 , 2  are 
8 ol(xl,t) aol(x9,t) 

ax2 D, at  - -- ; - h l < x ~ < O , r > O ,  (a) 

(2.66) 

(b) 

The initial and boundary conditions for the heat conduction problem =e 
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d X’ 

O1(-h1,f) = 0, H(t ) .  (e) 

where 

Ol(x,t) = Tl(x*,t) - T,, 

02(x’, t)  = 7‘2(~9,t) - T,  , (b) (2.68) 

0 0  = T o - T , .  (c) 

T, is the initial temperature for both materials, and To is the temperature 

at the boundary at  any time, t >  0. Condition (2.67)(c) implies no resistance a t  

the interface, and condition (2.67)(d) implies insulated outer boundary. 

Again, if we apply Laplace Transform to equations (2.66), and use 

condition (2.67)(a), we will end up with two ordinary differential equations that 

have the general solutions in the form 

- 
Ol(x9p) = A ,@) cosh qlx* + B l(p) sinh qlxv , (a 1 

(2.69) 
- 
%(x-p) = A2@) cosh qp +B2@)  sinh qpv. (b 1 

where AI@), Ill@), A%@), B2(P) are four constants that can be determined from 

the conditions (2.67)(b-e). So, after some manipulations equations (2.69) will 

become 

- Oo[coshq2h2coshqlx’-q sinhq2$sinhqlx*] 
O1(x-p)  = (a 1 p[coshqlhl coshq2$+r\ sinhqlhl sinhq2$] ’ 

- OO[cosh q2h cosh 499 - sinh q2$ sinh q-p] 

p[coshqlhl coshq2h2+q sinhqlhl sinhq2$] * 
02(x99) = 

(2.70) 
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where 
- 

(2.71) k; Dl 

D2 
ki 

- - 
q l = L  P , ,=e, q=-d-. 

Dl D2 

Applying the Inversion Theorem the temperatures el(x,t), 02(x,t), are 

found to be 

(2.72) 

where 
- - 

C1=&/Dl , e2=&/D2. (2.73) 

It is clear that the integrands in equations (2.72) are single-valued functions of 

z,  with simple poles a t  z = 0, and at  the roots of the equation 
cosh clh,  cosh c2% +q sinh Glhl sinh r2h2 = 0. (2.74) 

Let, 

Then equation (2.74) becomes 
c o s o h l c o s ~ w ~ - q s i n o h l s i n ~ o h 2  = 0. 

where 

(2.75) 

(2.76) 

(2.77) 

It can be seen that the roots of equation (2.76) are real and symmetrically 

placed with respect to o = 0. The roots ai are obtained from the intersection of 

the two families of curves y = cot oh,, y = qtan hh,. The simple poles of 
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equation (2.76) are distributed along the real axis  in the negative direction, and 

are equal to 

(2.78) 

The residue at  these poles (z = 0 , z = -D1om) can be found in Appendix 

(D). Then, by using the Residue Theorem, the contour r shown in Figure 2-7, 

and letting 

2 z,,,=-Dlo,,, , m=1,2,3, ....... 
2 

the closed form solutions for e,, 0, are found to be 

7 + i M  I 

Figure 2-7: The contour for evaluation of integrals in equations (2.72) 

@1(x*,'C) oo e-Tkm* 
= 1 - 2 c  - 

00 m=l Am 

[cos h,(x* - 1) cos hm6R +q sin h,(x* - 1) sin hm6R] 
[ (1 + q 6 R )  sin A,,, cos hm6R + (6R +q) cos h,,, sin h,,,6R] 

; O < x * ~ l ,  (a) 

(2.79) 
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(2.80) 

COS h,,,6(~* - 1 -R)  
[(l +q6R)sinA,,,cosA,,,6R+(6R+q)co~A~sin~~6R] 

where 3Lm ,(m = 1,2,3, ... ..,) are the roots of the equation 
cos A,,, cos hm6R -q sin hm sin A,,,i3R = 0. 

2.2.1.2 Ramp function at the boundary 

‘ t  

t 0  t 

(2.81) 

Figure 2-8: a-Geometry of the problem (Model 11) b-Temperature boundary 

If we apply a ramp function at the boundary, Figure 2-8(b), the 

differential equations for the materials 1, 2 , and the initial and the boundary 

conditions are the same as equations (2.66), (2.67), except that, condition 

(2.67)(e) should be changed to 

condition (ramp function) 

0 0  0 0  

t0 t0 
O1(-h,f) = - f H ( f ) - -  (+-to) H(t-to). 

Again, by applying Laplace Transform, we obtain equations 

(2.82) 
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Oo[coshq2h2coshq1x*-q sinhq2h2sinhqlx.] 

p[cosh q1 h, cosh q2% +q sinh qlhl sinh q2%] ' F21(P) = 

Oo[cosh q2b cosh qp - sinh q2h2 sinh qg'] 

p[coshqlhl coshq2~+qsinhqlhlsinhq2h2] ' (b) (2.84) F z ( P )  = 

By applying the Convolution Theorem to equations (2.83), and observing 

that FZl, FZ2 are the same as equations (2.70), and letting 

tool , To=- - = ( ~ * - l ) ,  R = - ,  h , = h l ~ , , ,  , T=- 
hl hl h,2 h12 

(2.85) 
X' h2 fD1 

the temperature distribution for strips 1 , 2  become 

[cos h,(x* - 1 )  cos hm6R +q sin h,(x* - 1) sin h,6R] 
~&,~[(l +q6R)sinh,cosh,6R+(6R+q)cosh,sinh,6R] 

; O I X * I ~  , z<z0, (a) 

[cushm(x*- l)cosh,6R+q sinh,(x*- 1)sinhm6R] 

z h m 3 [ ( l  +q6R)sinh,cosh,6R+(6R+q)cosh,sinh,6R] 

; 0 1 x * < 1  , .c>z0, (b) 
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COS hm6(x* - 1 - R )  

zdL,3[(l + q 6 R )  sin hm coshm6R + (6R +q) cosh, sin hm6R] 

; l S x * S ( R + l ) ,  zSzo, 

; 1 5 x * S  ( R + 1 )  z>zo. 

where 6 = dD,/D2, and Am are the roots of equation (2.81) 

(2.86) 

2.2.2 Thermal stresses in uncracked problem 

Consider a thin-walled hollow cylinder with cladding of thicaess h,, an1 

base metal of thickness h,, shown in figure 2-9(a). 

Let us take an element from the composite shell of unit length and a very 

small angle d4, as shown in Figure 2-9(b). Assume a uniform strain over the 

shell thickness E@, E ~ ~ ,  then from the Hooke’s Law we have 

1 1 
E$ = -(O1y-vlOlt)+cL’ 0 =-(02y-v202$+01;02, E, (a) 

El 

(2.87) 

(b 1 1 1 
&or = - (Qlr -Vloly) +ai 0, =-(02r-V202y) + a; 0,. 

E1 E2 

where oly, olt, 02y, 02, are the stresses in axial and tangential directions for 1, 

2, respectively, v,, E,, a;, v2, E,, are the Poisson’s ratio, Young‘s modulus 

and thermal expansion coefficients, respectively. By integrating equations (2.87) 

over the shell thickness we obtain 
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(4 
Figure 2-9: Geometry of thin-wall hollow cylinder with cladding to calculate 

thermal stresses in uncracked problem 

where 
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The resultant force in radial and axial directions must vanish giving 

Equations (2.90) can be put in the form 

(2.89) 

Equations (2.88) and (2.91) are six equations with six unknowns (E%, E@, 

CJ ly,  <T I t ,  02,,, 0 2t) .  By examining these equations we can see that they would be 
- - - -  

unaltered if the subscripts y and t were changed. Therefore, 

- - -  
0 2 , = 0 2 r = 0 2 ,  (b) (2.92) 

ES, = %f = %* (c 1 
Then, equations (2.88) and (2.91) are reduced to 
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1 -  ~=-(~ l -v lO1)+a;Ol , ,  
El 

qh,+02h2 = 0.  

By solving equations (2.93) together we can get 

El E2 
%= 

1 - V I  h l +  1 -v2 h2 

Also, from equations (2.87) we can see that 

O l y  = Olt  = 01 

1 -VI  

E1 

, 0zy = 02 = 0 2 .  

Then equations (2.87) become 

Eo = - ol(x,t)+a; @,(x,t), 

(2.94) 

(2.95) 

(2.96) 
1 -v2 

E2 
Eo = - o2(x.t) + ”; 02(x,t) . (b 1 

Substituting equation (2.94) into equations (2.96), the thermal stresses in 

materials 1 , 2  can be written as 

(a ) 
El 

1 -VI b l ( X , t )  = -[%-ai Ol(x,t)] ,  

(2.97) 

(b 1 
E2 

1 -v2 02(x,0 = -[%-a; 02(x,01. 

Thus, in the concentric cylindrical shells having a radial temperature 

variation, the axial and tangential stresses are given by equations (2.97) at all 

points except at the ends of the cylinder. The end surface tractions produce 

thermal end moments at the rim of the cylinder, and these generate axial 

bending stresses which disappear rapidly with the increase of distance from the 
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end. Let 
fD1 , ,T=- x* = - , R = -  

h l  h l  h: ’ 

X h, 

Then, equation (2.94) becomes 

(2.98) 

E2”; 1 -VI I+R O~(X*,T) 

E1 l-v2 I 1 00 
&* I,’ “I;;,” &* +--- 

a: 
1 %=ai00[ 1 (2.99) 

E2 l-vi  
1+-- R 

E, 1-v2 

, from (2.97) and (2.99) the thermal stresses in 4 ai eo By letting oOT = -- 1 -VI 

materials 1,2 are found to be 

61 (X* ,7 )  0 1 (X*,2) 

GOT 0 0  
- - 

; O S X * I ~ ,  (a) 
(2.100) 

E2 l -vl  
1+-- R 

E, 1-vz 

J 

; l I x * < R + l .  (b) 

where the integrals 
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are given in Appendix 

(2.101) 

(E). Equation (2.100) give, essentially, the thermal 

stresses in a composite plate constrainedko remain in its own plane. 

2.2.2.1 Stiffness of the elastic foundation 

I 
Y 

Figure 2-10: Geometry of thin-wall hollow cylinder with cladding to calculate 

It is well known that the thin-wall hollow cylinder can be simulated as a 

beam on an elastic foundation of stifhess related to the radius of the neutral 

surface of the cylinder, the thickness of the cylinder , and the Young's modulus, 

El. 

stiffness of elastic foundation x 

In case of thin-walled hollow cylinder with cladding, Figure 2-10, the 

stiffness of the elastic foundation x can be determined by taking a strip AB of 

unit width cut from the composite cylinder. Assume that x,, denote the change of 

the radius R, (radius of the neutral surface, e = 0), i.e, x,, = ARn, which is the 
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I 
t 

deflection of the strip at any section measured from neutral surface. The strain 

over the cross section E,, would then be 

Now, the corresponding stresses are 

E A  
CTzr = -. 

Rn 

Then, the force per unit length on the strip AB is 

The radial component of this force is 

(2.102) 

(2.103) 

(b 

(2.104) 

(2.105) 

where d$ = UR,. 

That is, radial force is proportional to  the deflection xn. So, we conclude 

that a longitudinal element of a cylindrical tube loaded symmetrically with 

respect to its axis can be regarded as a beam on an elastic foundation, having 

the stiffness 

(2.106) 

where R, is the radius of neutral surface of the cylinder. To obtain R,, let us 

consider the composite beam shown in Figure 2-11. 

Let p’ is the radius of curvature of deflected beam and xn is the distance 

from the neutral axis, then 

‘n 

P’ 
Er = - 

A 

(2.107) 

So, the stresses in 1 ,2  become 
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i 

t stiffness 
X 

Figure 2-11: Geometry of composite beam to calculate the radius of neutral 
axis R, 

EZrn 
02y = p“ 

The total force in y-direction must vanish, then 

(2.108) 

(2.109) 

where AI, A, are the cross section areas of 1, 2, respectively. Substituting 

equations (2.108) into equation (2.109) we may have 

El -jx,d1+-Jx,dA2 E2 = 0. 

P’ P’ 
Since 

- 
j*,dA, = --x lnA1 9 

(2.110) 

(2.1 11) 

- -  
where x In, x 2n are the distance from the neutral axis to the center of the cross 

sectional area for strips 1 and 2 respectively. Then equation (2.110) can be 
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written as 

Also 

- -  
Solving equations (2.112) and (2.113) for x In, x 2n, we have 

(2.112) 

(2.113) 

(2.1 14) 

Since, the beam has a unit width, i.e, AI = hl.l, A, = h2.1, then equation (2.114) 

becomes 

- 1 E2h2 
x In = - ( h  2 + h2'Elhl+E2h2' 

So, the natural axis radius R, is 

hl  - R ,  = R ~ + - + x  in, 
2 

(2.115) 

(2.1 16) 

where Ri is the inner radius of the cylinder. 

2.2.3 Formulation of the crack problem 

Consider the problem that is shown in Figure 2-12, where x is the 

stiffness of the elastic foundation. The analysis is the same as in Model I, and 

equations (2.41), (2.42), (2.43), (2.44 and (2.45), are still valid. Then the 

displacement fields and the stresses are 

K1- 1 + (+a + C4{ -- ax}) e-m] cosya da 
2 
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K1+3 
+ (C3a - C4{ -- ax}) e-"] cosyada 2 

(b 1 

(2.1 17) 

K1+l 
+ (-C3a + C4{ -- ax})e-"] sinyada 

2 
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K1 
a + (C3 - C, { - - x }) e-"] sin ya da 

Material (2) , h,  5 x 5 h,  + % , 0 S y < oQ 

+ (-c5" + C,{ -- c ~ x } ) e - ~ ]  s i n y a d a  
2 

u,(x,y) = 'j" [(C,+C8x)~+(Cg+Cdc)e-XQ] cosyada 
* O  

(2.118) 
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where Cj , (j = 1, 2, ......, 8 )  are functions of a, and A,, A, are functions of p, and 

are to be determined from the boundary and continuity conditions. Eight of 

these conditions are given by (2.48), (2.49) while the two remaining conditions a t  

(g 1 
(h) (2.119) 

By using the same definition of the density functions $,(x), $,(XI, as in 

equations (2.50), and by using the boundary conditions (2.48), (2.119) and the 

Fourier Inverse Transform, with the help of the integration formulas given in 

Appendix (B) we will have 
1 bl 

-B, - elC2 - B, + e1C4 = -I M, $l(tl) dt,  , (a 1 
"I 

K1+1 

e4B1 +e3C2-mB3 +egC4+Bg+e6C6-el@7+e2jC8 
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eld31 + el 1'2 +B3 +e12C4-B5 -e  12C6-e ld37 - e  11'8 

(2.120) 

where B ,  = aCl , B3 = aC3 , B ,  = aC, , B ,  = aC,, e's and M's are shown in 

Appendix (F), and p = x/2p2a. 

Equations (2.120) give eight equations in ten unknowns. M e r  long 

manipulations, we can obtain the unknowns C' , 0' = 1, 2, ....., 8) in terms of the 

two other unknowns 4, , +2. The results are shown in Appendix (F). 
By using the mixed boundary conditions as in Model I, w e  obtain two 

singular integral equations of Cauchy-type in the same form as equations (2.621, 

(2.63), where Gii, (i , j =  1 ,2  ,) , in this case are 
K 1 + 3  

Gii(xiJ1,a) = (T + U1)Q31 ela 
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(2.121) 

in which Qj , (f = 1, 2, ......, 161, Do, are found in Appendix (F), 

ai <xi c bi, ai c ti e bi, ( i=l ,2) .  
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Chapter 3 
THE SINGULARITY AT THE CRACK TIP 

It is well known that the stress fields around a crack tip is proportional to 

P, where r is a small distance from the crack tip a t  which we measure the 

stress field, and s is called the power of singularity which should be between 

zero and one, i.e, 0 e s < 1 . If s is less than zero, the stress is bounded as r+  0 , 
and there is no singularity at the crack tip. If s is greater than one, the strain 

energy density is unbounded and goes to infinity as r+ 0, which also is 

impossible. 

The value of singularity s is dependent on the crack configuration as well 

as the material properties. For each special crack confrguration, some terms of 

the kernels in the singular integral equation (2.621, (2.63) become singular. By 

using Muskhelishvili's technique [371, the singular behavior of the stress state 

at the crack tip can then be examined for each case. 

Since, the singularity at the crack tip will be the same for both Models I 

and 11, the results would be valid for both models. 

3.1 Embedded crack in both materials 
The case of a crack embedded in both materials is shown in Figure 3-1. 

The only singular terms in the integral equations (2.62), (2.63) are the dominant 

, other kernels are bounded as a+=. The two singular terms - and - 
'1 -x1 ' 2 - 5  

1 

integral equations can thus be written in the form 
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* t  
I 

Figure 3-1: Geometry of embedded crack in both materials 

where B.T. correspond to the bounded terms. 

To examine the behavior of the unknown functions around the 

irregular points (end points), following Muskhelishvili [37], we assume that the 

unknown functions , $2 may be expressed as 
gj (5) 

= g.(t.) w.(t .)  ; j=1 ,2 .  
I J  I I  $.(t.) = ' ($-uj)"j(bj-ri>Pj 

(3.2) 

where gj($) satisfies a HSlder condition in the closed interval ujS $5 bj , o= 1,2) 

and g j ~ u j ) # 0 , g l ( b j ) # 0 , , o ' = 1 , 2 ) .  Also aj.pj,(j=1,2) are the singularity a t  the 

irregular points which should satisfy the condition 0 < Re(aj ,  pj) c 1 , (j= 1 ,2) , and 

wj(fi)  is any definite branch which varies continuously on the interval 

u.< ti< bj , 0=1,2). J 
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Define the following sectionally holomorphic function 

Substituting equation (3.2) into equation (3.3) we obtain 

Following Muskhelishvili, equation (3.4) can be written as 

gj (aj) e*‘aj gj (b;) Fj(z)  = - 
(bj-a .)pi ( Z  -a .)aj sin “aj (b,- a,)aj ( z  - b,)pj sin I$, I I 

where Foj(z) is bounded everywhere except possibly at the end points 

ai, bj , G= 1 ,2), where it has the following behavior 

where e j l=a j  , ej2=bj , p j l  c Re(aj) ,pi2 c Re@,) , and c;k ,p;k are real constants , 
i.e., Foj (z )  has singularity less than ai, j3, , u= 1 ,2). 

Using the Pelemelj formula [37] 

which, by using equation (3.51, may be expressed as 
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+Foj(xj) ; j = l  ,2 .  

Substituting equation (3.8) into equation (3.1) we can find 
gj (u,) cot mj gj (bj) Cot RPj - = WJ.(Xj) ; j=1,2.  

(bj - a,)Pj (x, - a,laj (b, - a,)aj (b, - x,>Pj 
(3.9) 

where vj (xj) ,  (j = 1 ,2) contain all the bounded functions. 

By multiplying equation (3.9) first by (X,-a,)S. , and letting xj+ uj , and 

then by (bj-xj)pj ; and letting xi+ bj , (j= 1,2) , we obtain the following 

characteristic equations for aj , Pi , (j = 1 ,2) 
gj (aj) cot 7caj 

= 0 ; j =  1 , 2 ,  
(b, - a,)pj 

Or 
cotnaj=O ; j=1 ,2 ,  

cotnp, = 0 ; j =  1,2.  

1 1 
The acceptable roots of this equation are ai = , pi = , (j= 1 ,2), which are 

the known results in the crack problems. Hence, the fundamental functions of 

the singular integral equations are 
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w.(x. )  = 1 , j=1 ,2 .  
J J  ( b.-x.)lR J J 

(3.12) 

Therefore as long as we have internal cracks , the power of singularity 
willbez. 1 

3.2 Edge crack 

3.2.1 Edge crack for Model I 

This case is shown in Figure 3-2, in which al = 0 ,  b ,  e h . If al goes to 

' t  

Figure 3-2: Geometry of edge crack (Model I) 

zero, the singular terms in the singular integral equation (2.62) are the 

dominant term - and some terms in the kernel k, (xl , tl) . Let 1 
I1  -11 

(3.13) b 
kll(x1,tl) = kS,,,(x1,t1)+kll(xl,tl) * 

where k;le is the singular term in edge crack case, and ktl is the bounded term. 

The singular part kile of the kernel is given by 
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(3.14) 

where GY,, is the asymptotic value of G,, for a+ 

(2.65) and Appendix (C) it follows that 

, tl + 0 , x1 + 0 . Then, from 

or 

Equation (3.16) can also be written as 

Then, singular integral equation (2.62) becomes 

bl 1 
0 1  tl -x1 

[ - + k ~ l , ( x , , t , ) ]  Ql(tl)dtl+ bounded terms 

Again, assume that 

where gl (t,) , w1 (t,) have the same properties as before. 

Define sectionally holornorphic function 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 



F ,  (z) = - -dt , .  (3.20) 

Substituting equation (3.19) into equation (3.20) and following [371 , we 

will have 

and 

Then, as before by following [37], equation (3.21) becomes 

(3.21) 

(3.22) 

(3.23) 

where Fol(xl) , F;, (x,) are similar to the Fo,-(xj) in equation (3.8). Substituting 

equation (3.22) and equation (3.23) into equation (3.18), we obtain 

(3.24) 

where wl(xl)  contains all the bounded functions. Equation (3.24) can be written 

as 
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(3.25) 

Multiply equation (3.25) by (b l -x l ) ’~  , and letting xl+ b,  , the characteristic 

equation for p1 is found to be 

(3.26) + p1=2. 1 cotxp, = 0 

Similarly, multiplying equation (3.25) by ( ~ , ) ~ i  , and letting xl+O , the 

characteristic equation for a, is obtained as 

+ g,(O)cotxa, g,(O) 
[ -2cc,(a, + 1)+6al  - 13 = 0. 

(bl)h (bl)h sinxa, 

which can be written as 

c o s x a , - 2 ( a , - 1 ) ~ + 1 =  0. 

(3.27) 

(3.28) 

Since a l = l  is unacceptable, the only possible root of equation (3.28) is 

al =O , giving the fundamental function as 
1 

(3.29) 

3.2.2 Edge crack for Model I1 

This case is shown in Figure 3-3, in which a, > h,  , b, = h,  + h, . 
If b, goes to h,+h2 , the singular terms in the singular integral equation 

(2.63) are the dominant term - and some terms coming from the kernel 1 

‘2 -3 

&&2 9 t2) - Let 
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b where G 2 , ( 3 , t 2 )  is the singular term, $ 2 ( 3 , r 2 )  is bounded and 

(3.30) 

(3.3 1) 

GY2, is the asymptotic value of G,, for a+ 00 ,r,+ h,  +& , x2+ h,  +b . From 

(2.121) and (3.31) it may be shown that 

e-(-fz-Xz+2L)ada . (3.32) 

where L=h,+h,  . Evaluating the integrals equation (3.32) becomes 

w-3) 4(L-3I2 + - 1 g2, (3J2 )  = 
(U--xr-r,) ( z - 3 - t 2 ) 2  ( z - 3 - r 2 ) 3  

(3.33) 

which is similar to the equation (3.16). Thus, by doing the same analysis as in 
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. The section r3.2.11, we obtain the same singularities, Le., C C ~ = ~ ,  p 2 = 0  

fundamental function would then be 

1 

3.3 material Crack tip terminating at the interface from 

This case is shown in Figure 3-4, in which a, > 0 , b, = h  . 
Crack tip terminating at the interface from material 

This case is shown in Figure 3-4, in which a, > 0 , b, = h  . 

0 O 1  

(3.34) 

Figure 3-4: Geometry of the crack terminating at the interface from material 

If b ,  goes to h , the only singular terms in the singular integral equation 

(2.62) are the dominant term - and some terms coming from the kernel 

(1) 

1 

5 - 3  

(3.35) 

where kfli(xl ,tl) is the singular term in the case of a crack terminating at  the 

interface, and k,, (xl, t , )  is the bounded term. The singular term is found from b 

kfli(x1,~,) = ~omG~li(xl.fl,a)da. (3.36) 
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where GYli is the asymptotic value of G,, for a+ - , r, 
(3.36) and (2.65) it may be shown that 

h , x, + h . Thus, from 

-- mK2-K1] +xl-2k)ada (3.37) 
2 m ~ ~ + 1  

or 

where 

m- 1 
m+K1 

C13 = 4- , 

(3.38) 

(3.39) 
(c) 

Equation (3.38) can also be written in the form 
1 d2 d 

k; li (x , ,tl> = - c (h - x1>2- - c 12(h - x ,t- - c , , I * 
hl 4 

(3.40) 1 
[r1-(2h-x,) I .  

Therefore, the singular integral equation (2.62) can be written as 
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I”’ [L + ki li (xl,rl) ]$ , ( t , )  dt, + bounded terms 
u1 tl -x1 

We again define 

Also, define the sectionally holornorphic function 

1 h $101) 

u1 t1-z 
Fl (z )  = --I --dr,. 

Using equation (3.42) into equation (3.43) and following [37] we have 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

* 
where Fol(xl) , Fol (x,) are similar to FO,(xj) in equation (3.8). Substituting from 

(3.45) and (3.46) into (3.41) we obtain 
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(3.47) 

where yl(xl) contains all the bounded terms. From (3.47) we have 

&(h) corxp, - g1(q )  C o t x q  

(h-a1)P1 (xl-al)al (h-al)'L1(h-xl)~l 

By multiplying equation (3.48) by ( ~ ~ - a ~ ) ~ i  and letting x l + a l  , the 

characteristic equation for al is found to be 

(3.49) 
1 

3 al = - 
2' 

coma1 = 0 

Also, by multiplying equation (3.48) by ( h - x l ) h  and letting xl+ h , the 

characteristic equation for p1 becomes 

which can be written as 
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(3.51) 

Equation (3.51) has a real root in the internal (0.1) . The root is dependent 

on the material constants. If material 2 is stiffer than material 1, the root will 

be less than i .  But if material 1 is stiffer than material 2, then the root wi l l  be 

larger than . The fundamental function of this case is 

(3.52) 

3.4 Crack tip terminating at the interface from material (2) 

This case is shown in Figure 3-5, in which 3 = h , b2 > h . 

Figure 3-5: Geometry of the crack terminating at the interface from material 
(2) 

If goes to h , the singular terms in the singular integral equation (2.63) 

are the dominant term - and some terms coming from the kernel %2 (x2 ,t2) . 

Let 

1 

'2 -x2 
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b where 4% (x2 ,  r2) is the singular term for this case, and h2 (x2, r2) is bounded. 

(3.54) 

where G72i is the asymptotic value of G,, for a+ 

(2.65) and (3.54) it may then show that 

, f2+ h , and $+ h . From 

where 

m-1 
‘23 = 4m 9 

PI 
P2 

m =- .  

(3.55) 

(3.56) 

(3.57) 

(c> 

The kernel given by equation (3.56) is quite similar to the corresponding kernel 

given by equation (3.38) . Thus, following the procedure leading to (3.49) and 
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(3.51) we obtain 

1 
[ t 2 - ( 2 h - 3 )  I .  (3.58) 

$2(t2)dt2+ bounded terms 

(3.61) 

(3.62) 
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1 
2 '  

corlcp2= 0 + p2 =-  (3.64) 

(3.65) 

Equation (3.65) is identical to equation (3.51) if the material constants are 

changed. So, we have the same argument as before. If material 1 is stiffer than 

material 2, 9 is less than and if material 2 is stiffer than material 1, 9 is 

larger than k .  The fundamental function in this case is 

1 

(3.66) 

3.5 Crack going through the interface 

This case is shown inFigure 3-6 in whichal> 0 ,  b , = h  anda;!=h, b2> h .  

Figure 3-6: Geometry of crack going through the interface 

In this case, the two singular integral equations (2.62) and (2.63) must be 

examined. If b,  and a2 go to the interface, we will have three irregular points 

x=al  , hand b 2 .  
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The singular terms in the singular integral equation (2.62) are the 

dominant term - and some other terms coming from the kernels k,, (xl  ,rl) 

and k,, (x,  , r2) . Similarly, the singular terms in the singular integral equation 

(2.63) are the dominant term - and some other terms coming from the 

kernels b1 ( ~ 2 ,  rl) and 5, (x2 ,  t2) . The singular terms in the kernels k , ,  ( x l ,  r , )  and 

b 2 ( x 2 , r 2 )  are sill the same as equations (3.40) and (3.58). By examining the 

singular terms in the kernels k,, (xl , t2) and k2, (+ , r , )  , let us define 

1 

1 1 - 5  

1 

1 2 - 3  

where Gy2 , GFl are the asymptotic value of GI, , G,, for a+ - , t2 + h , x1 + h 

and a+ - , r l +  h , x2+ h , respectively. From (3.68) , (2.65) and Appendix (C) 

we then obtain 
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(3.69) 

where 

(3.70) 
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Equations (3.70) can also be written as 

(3.72) 

The two singular integral equations (2.62) and (2.63) then become 

(3.73) 

Substituting equations (3.40), (3.58), and (3.72) into equations (3.731, and 

by using the same technique as before, we will end up with the same equations 

as (3.45), (3.46), (3.60) and (3.61). Also, from the two kernels ki2(xl,t2) and 

G1 (x2,t1), we obtain 

(3.74) 

where Fy2(x1) and Fil(x2) are similar to Foj(xj) in equation (3.8). Then the 
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singular integral equations (3.73) become 

1 d2 d 
+ [ - - C l ~ ( h - x l ) 2 - - C 1 2 ( h - x ~ ~ - c l l  ] 

2 bl 4 

(3.75) 

where Yl(xl) , Y2(x2)  contain all the bounded functions. Then equations (3.75) 

can be written as 
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It is important to mention that, we just have one irregular point at the 

interface, therefore, 

P 1 = % .  (3.77) 

We now multiply equations (3.76)(a) and (3.76)(b) by ( X ~ - ~ ~ ) ~ I  and 

(b2-x2)p2 respectively , and let x1 + al and 3 + b2 . Then the characteristic 

equations for al and p2 are found to be 

(a) 
1 

corml  = O  + al = -  
2 '  

(3.78) 

(b ) 
1 

corxp2=0 + p 2 = ? .  
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Also, multiply the same equations by (h-xl)h and (x2-h)k respectively, 

and let xl+ h and%+ h . Then we find 

(3.79) 

The solution of interest of (3.79) satisfies 0 < Re(&) e 1 . Thus, since gl(h) 

and g2(h) are non-zero, the determinant of the coefficients in (3.79) must vanish, 

giving the characteristic equation for P1 as follows 
1 

cos@, +ZC23P1(P1+ U+C& +c,, 1 

= o  - (3.80) 

It is clear from equation (3.79) that, gl(h) and g2(h) are not independent, 

and are related by 

Equation (3.81) will be necessary in order to  obtain a unique solution for 
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the singular integral equations (2.62) , (2.63) . Equation (3.80) has always a real 

root in the interval (0’1) . The fundamental functions of the singular integral 

equations (2.621, (2.63) are 
1 

w1(x1> = (a 1 
(xl - a p  (h  -@1 ’ 

1 (3.82) 

75 



Chapter 4 
Numerical Procedure 

The solution of the problem depends on the two unknown density 

functions , $2 which can be obtained by solving the two singular integral 

equations (2.62) , (2.63) numerically by using any one of the techniques 

available in [a] or [38 ,393. In this work the expansion method described in [38 

, 391 is used. In order to solve them let us rewrite these two equations (2.62) 

and (2.63) in the following form 

where 

Normalizing the two singular integral equations (4.1) by using the following 

transformations 
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.- 

bi- ai bi +ai 
2 2 

fi = -ri + - , ( a i S r i 5 b i , - l  S r i S  1 )  

bi -ai bi + ai 
2 2 xi = -si + - , ( a i S x i S b i , - l  < s i $ ; )  

the two singular integral equations (4.1) may be expressed as 

=Pl(sl) ; - 1  e sl< 1, (a) 

where 
b-aj  J 

I J  2 1 J  
Ky(s. ,r .)  = - kii(x.,t.) ; ( i , j  = 1 ,2). (4.5) 

and vi(r i )  , Pi(si) are respectively the transformation of $i(ti) , pi(xi) (i = 1 ,2). Since 

Then, vl(rl) , v2(r2) will be equal to 
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where 

and A1(rl)  and A2(r2) are the transformation of gl(tl) and g2(t2) respectively. 

Then, the two singular integral equations (4.4) may be written as 

+ K22 ( s2 j2 ) ]  dr2 = P2(s2) ; - 1 < s2 < 1 . 1 
[- 
'2  - s2 

We may defme 
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where 

Then, the two singular integral equations (4.9) can be put in the form 

(4.1 1) 

(4.12) 

Let us assume that the two functions F: (r,)  and F;(r2) are in the form of simple 
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power series such as 

M 

m=O 
Fi (r2) = c b, r; . 

where a,, , b, are the coefficients of these series to be determined, the number8 

of which are ( N + l )  and (M+1) , respectively. Substituting equation (4.13) into 

equation (4.12) we obtain 
N M 

where 

(4.15) 
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1) 
Pl(Sl) = - x - 

GOT ' 

It is obvious that equation (4.14)(a) has (N+1) coefficients a, , and equation 

(4.14)(b) has (M+l) coefficients b, . By choosing the number of the collocation 

points for s1 , s2 between (-1 , +1) , which depend on the number of the unknown 

coefficients a, ,  b, , we can obtain a system of linear equations that can be 

solved to give these coefficients. It is clear that, the number of the coefficients 

a, , b, depend on the convergence of the series in equations (4.13). 

Although there is no restriction on the choice of the collocation points, it 

was shown by Kaya [41] that a symmetric distribution with respect to the origin 

considering more points concentrated near the ends seems to help. So, the roots 

of the Chebeychev Polynomial will be used as collocation points. 

To obtain a unique solution for the singular integral equations (2.62) , 
(2.63) additional conditions are needed depending on the crack configuration. 

Each configuration will be investigated separately in the following subsection. 

4.1 Embedded Crack 

Figure 3-1 presents this case in which u1 > 0 , b, c h , a2 > h and b2 c m. 

Also, the singularity at the end points are 
1 

q = p1 = = p2 = - 2' 

The collocation points for s1 and s2 are selected as 

(4.16) 
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; k =  1 ,2  ,.... .N, x (2k- 1) 
2N 

SI& = cos 

; I = 1,2  ,.... M .  X(21-1) 
2M 

S2r = cos 
(4.17) 

(b ) 

where slk ,su are the roots of the Chebeychev Polynomial. By substituting 

equations (4.17) into equations (4.14) we obtain the following system of ( N + M )  

equations for ( N + M + 2 )  coefficients an ,brn 
N M 

(4.18) 

; 1=1,2,..M. 

where 
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Two extra equations are needed. From the definition of the density functions 

$, , 4, , we have the following single valuedness conditions providing the (N+ l)lh 

, and (M+ equations : 

b2 $2 (t,) dt, = 0. 
a2 

(4.20) 

which can be written, after changing the variables tl and t2 , and using 

equations (4.13) , in the following form 
N 

a,Gn = 0, 
n=O 

M 
bmGm = 0. 

m=O 

where 
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Grn 

(4.22) 

The integrations in equations (4.19) and (4.22) can be found in appendix (GI. 

4.2 Edge Crack 

Figure 3-2 shows this case in which a, = 0 and b,  < h . Also, the singularity 

at the end points are 

(4.23) 1 a,=o , p1=2. 

Since, we have one edge crack, then the collocation points for s1 are 
7c (2k- 1) 
2 ( N +  1) 

Slk = cos ; k =  1,2 ,..... (N+l). (4.24) 

In this case, the number of the collocation points are (N+1) which should be 

equal to the number of the unknown coefficient a, , because the single 

valuedness condition (4.20)(a) is no longer valid. Thus, by substituting equation 

(4.24) into equation (4.14)(a), considering one crack in material (l), we obtain 

the following ( N +  1) equations for (N+ 1) coefficients a,, which are 
N 

n=O 
c an<,(slk) = P, (Slk) ; - 1 < s, < 1 ; k= 1.2 ,... ( N +  1). (4.25) 

where 
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(4.26) 

The integration in equation (4.26) can be found in Appendix (G) 

4.3 Crack Terminating at the Interface 

Figure 3-4 shows the case in which u1 > 0 , bl=h , and the singularity at 

the end points are a1 = and p1 , where p1 can be obtained from equation (3.51). 1 

Similarly Figure 3-5 shows the case in which u 2 = h ,  6, e 00 and the singularity a t  

the end points are p2 = and , where % can be obtained from equation (3.65). 1 

For the case shown in Figure 3-4, the collocation points and equation (4.14)(a), 

(considering one internal crack in material l), become 

where 

; k = 1 ,2 ,  .....Jv, x (2k- 1) 
2N 

Slk = cos (4.27) 

(4.28) 

(4.29) 

Equation (4.28) has N-equations with (N+ 1) coefficients un. The (N+ l)th equation 

necessary to obtain a unique solution can be obtained by using the following 

single valuedness condition; 
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which can be written in the form 

a,G" = 0. 
N 

n=O 

where 

(4.30) 

(4.3 1) 

(4.32) 

Similarly, for the case shown in Figure 3-5, the collocation points and equation 

(4.14)(b) (considering one internal crack in material 2) will become 

; I =  1,2 )....... M ,  (4.33) n(21- 1) 
2M s21= cos 

M 
b,l$!2(s2J =P2(s2)  ; 1=1,2, ... M .  

m=O 

where 

(4.34) 

(4.35) 

Equation (4.34) has M-equations for (M+ 1) coefficients b,. The (M+ l)rh equation 

can be obtained by using the following single valuedness condition; 

J: +2 (t2> dt2 = 0. (4.36) 

which can be written as 
M 

b,Gm = 0. 
m=O 

(4.37) 
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where 

(4.38) 

The integrations in equations (4.29), (4.32), (4.351, (4.38), can be found in 

Appendix (GI. 

4.4 Crack Going Through the Interface 

Figure 3-4 presents this case in which al > 0 , b ,  =h,  a2=h  , b2 c m , and the 

singularity at the end points are 

(4.39) 1 
q =  P2 = 5 . * P1=a;?- 

where p1 or a;? can be obtained from equation (3.80). In this case equations 

(4.17) and (4.18) will still be the same with 

(4.40) 
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and P1(slk) ,P2(s2J can be found in equation (4.19)(e , 0. 

Equations (4.18) have (N+M) equations for ( N + M + 2 )  coefficients a,,b, . 
So, the two extra conditions we need to obtain a unique solution are 

(4.41) 

and 

After changing the variable and substituting from equations (4.13), equations 

(4.41) and (4.42) become 
N M 2 a,GT+R1 b,G; = 0 .  

n=O m=O 

where 

M M 
R2 a,(+l)"+Rj C b,(-l)"'= 0 .  

(4.43) 

(4.44) 

(4.45) 
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The integrations in equations (4.40), and (4.45) are found in Appendix (G). 

4.5 Edge crack going through the interface 

This case is shown in Figure 4-1, in which al = 0 , b,  = = h , b2> h . Also, 
the singularity at the end points are 

"t 

Figure 4-1: Geometry of edge crack going through the interface 

1 (4.46) a , = o ,  p 2 = 5  9 P 1 = q ! 9  

where p1 or 9 may be obtained from (3.80). The collocation points for s1 and s2 

are 
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; k = 1 ,2 ,...... (N+ l ) ,  7c (2k- 1) 
SI& = cos 

2 ( N +  1) 

X(U- 1) ; 1=1 ,2  ,...... (M>. 2M s21 = cos 
(4.47) 

(b 1 

Equations (4.14) may then be expressed as 
N M 

(4.48) 

where 

(4.49) 

and q2 (slk) , c2 (s2J are the same as in equations (4.40)(b,d). 

Now equations (4.48) have ( N + M +  1) equations for (N+M+2) coefficients 

an,b, . Since, condition (4.41) is no longer valid, then the only extra condition 

that we need to obtain a unique solution is equation (4.41) or (4.44). Appendix 

(G) contains all the integrations needed. 
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Chapter 5 
Stress Intensity Factors 

5.1 Embedded Crack 

The stress intensity factors at the irregular points a, , b ,  , $, b2 may be 

defined by 

k(bl) = lim 42(x- b,)  q, (x,O) , 
x-+ b, 

k(b2) = lim d2(b2-x)"2yy(x,0). (d 1 
x + b 2  

We note that the expression for the stresses o,,(x,O) and c ~ ~ ~ ( x , O )  in equations 

(5.1) are for x outside the crack and can be obtained from the two singular 

integral equations (2.62) and (2.63), by observing that these equations give the 

stresses for y=O outside as well as inside the cracks. Thus, 

Substituting equation (5.2)(a) into equation (5.l)(a) we find 
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(5.3) 

Since, for embedded cracks the kernels K,, (x,tl) , K12 (x,c2) are bounded , equation 

(5.3) can be written as 

{ J b1 olodrl + bounded terms } . (5.4) 
Ul e l - X  

By defining the sectionally holomorphic function 

and observing that 

1 
After separating the leading terms at the end points of the cut for a1 = p1 = , 

equation (5.5) can be expressed in the following form, 
xi 

where Fo1(z) has the same properties as in equation (3.6). By using the Plemelj’s 

formula, equation (5.7) can be written as follows 
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+FOl (x )  ; x <  a,. 
g ,  (b , )  - 

(b, - a l ) l n  (x - b ,)In 

Substituting equation (5.8) into equation (5.4) we find 

+ bounded terms ] g,(b1) - 
(b ,  -a l ) lR  (x-  b,)In 

(5.9) 

Similarly, the stress intensity factor at the other irregular points b, , a2 , b2 are 

found to be 

4u, .3 

L L L  

Equations (5.10) may also be expressed as 
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(5.1 1) 

k(b2) = -4 - b2-2 ooTFi (+ 1 ) .  
2 

5.2 Edge Crack. 
In this case, shown in Figure 3-2, the stresses are bounded at a, = 0 , but 

have singular behavior at b ,  . So, the stress intensity factor at b ,  may be defined 

by 
- -  

k(bl) = Em d2d(x-bl)al,,,,(xyO) . (5.12) 
x+ b,  

where ol,(x,0) is the stress for x outside the crack, which can be obtained from 

equation (5.2)(a), by considering one crack, i.e 

(5.13) 

Substituting equation (5.13) into equation (5.12) and observing that the kernel 

K,, (xyrl) is bounded as x+ b ,  and tl  + b ,  , equation (5.12) becomes 
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-$,(rl)drl + bounded terms } . (5.14) 

The density function i$, for edge crack is given by 

(5.15) 

Then, by following Muskhelishvili's technique, the singular term in equation 

(5.14) can be expressed as 

(5.16) 

So, the stress intensity factor at the irregular point b, , can be written as 
- -  

k(bl )  = - 4p1 lim 424x-b, 
(Kl+l)x+ b, 

+ bounded terms } . (5.17) Sl(0) gAb1) 
(bl)'D (x-b,)'R 

{-- 

Therefore 

which can be reduced to 

k(bl)  = -46 ooT F; (+ 1) . 

(5.18) 

(5.19) 
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5.3 Crack Terminating at the Interface 

The stresses have singular behavior, at the ends a, and b, = h in Figure 

3-4, and at the ends a, = h and b, in Figure 3-5. First, consider Figure 3-4 in 

which the stress intensity factor at a, and b,  = h may be defined by 

k(a,) = lim .12(a,-x)alyy(x’o) , 
x+ul 

(5.20) 
k(bl = h) = lim .IZ(x-h)h CJ,~(X,O) . (b 1 

x+ h+O 

where the stresses alyy(x,O) and O ~ ~ ( X , O )  can be obtained from equations (5.2)(a) 

and (b) by considering one internal crack, i.e. 

Substituting from (5.21)(a) into (5.20)(a), and observing that the kernel K,,(x,t ,)  

is bounded as x+ al , tl + a, , equation (5.20)(a) may be written as 
- -  

%a,) = 4p1 lim .I2.Ia1-x* 
X(K~ + 1)x+ al 

dr, + bounded terms ] ; al e xc h . (5.22) 

Since, the density function Q, in this case is defined by 

(5.23) 

by following Muskhelishvili’s technique [37], the singular term may be 
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expressed as 

+ bounded terms . g1(h) - 
(h  -a 1) 112 (x - h ) h  sin I$ 

Thus, equation (5.22) becomes 

+ bounded terms ] . g1(h) - 
(h - al)lR (x- h)h  

The stress intensity factor at the end al may then be expressed as 

Since, by definition 

Equation (5.26) would be reduced to 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Similarly, the stress intensity factor at b l = h  can be obtained by substituting 

equation (5.21)(b) into equation (5.20)(b), i.e. 
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The singular terms of the kernel K21 (x,r,) , as x -+ h , rl + h is 
d*1 d22(X-h) 

(-1) (x-t1>2 
41 (q) = - + 

Thus, equation (5.29) may be expressed as 

Since the density function is defined by 

By following Muskhelishvili's technique, we have 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

From equation (5.31) it then follows that 
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d 
G!x 

lim d T ( x - h ) h  [ { ~ l ~ ~ ( x - h ) - - d ~ ~ }  4 k  k(bl) = - 
(%+1).r+ k 

(5.34) 
-g1(h) + bounded terms 3 .  

(h-al)lR(x-h)PisinxP1 

By using 

Equation (5.35) may also be expressed as 

(5.35) 

(5.36) 

(5.37) 

Similarly, in the case of Figure 3-5, it may easily be shown that the stress 

intensity factors at the end points a2 = h and b2 are given by 

(5.38) 

b2- h 
2 

k(b2) = - .! - ooT (2)'R-aZ Fi(+l). (5.39) 
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5.4 Crack going through the interface 

As in the previous section [5.3] the stresses at the end point al , b2 have 

singular behavior, and the stress intensity factors a t  these points are still the 

same as equations (5.28) , (5.39) respectively, which can be put in the following 

form 
- 1 h-al 

k(a1) = d?  Go' 4- (2)'R+l F; ( - l ) .  
I (5.40) 

b2 - h  
1 

- 
(2)lR-s1 F i ( + l ) .  k(b2) = -4 2 GOT d - I 

(5.41) 

where 1 is the total crack length. At the irregular point b,=a2=h , the stresses 

o,(h,y) , o,(h,y) become unbounded as y-+ 0 . Thus, the normal and shear 

components of the stress intensity factor may be defined as follows 

k, = lim y h  o,(h,y), 
Y + O  

where o,(h,y) and o,(h,y) are the components of the stresses a t  the interface 

which after long manipulation, are found to be 
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+I,”’ ki4 (h,r2) $2 (t2) dr2 + bounded terms 3 , (a) 

(5.43) 

ki3 , ki4 , G3 , k h  can also be put in the following forms 

10 1 



1 
1 + B A  1 k 3 4 )  = -[ (---- 

( t2-h)+iy  (t2-h)-iy 

Substituting from (5.43 

1 + 1 .  
1 

-AY { 
[ (t2- h)  + iy12 [ ( t2-h)  - iy l2 

A o  (5.42), we find 

+I,” k:4 (h,t2) $2 (t2) dt2 + bounded terms , 

(5.45) 

(5.46) 
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+I," ki4 (h,t2) $2 (t2) dt2 + bounded terms . (b ) 

By observing that 

(5.47) 

and following MuskhelishviIi's technique, the singular terms can be written as 

R 
g, (h)eTih 

dt1 = +bounded terms . 
(h-ul)OC'yP1 sinxpl  

(5.48) 

(5.49) 

(5.50) 

(5.51) 

From (5.48)-(5.51) it follows that 
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+ bounded terms . - P1 g, (4 - 
‘Tc (h - a l y l  ,PI sin- p1 
2 

(5.52) 

(5.53) 

(5.54) 

(5.55) 
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+ bounded terms . g, (h) - - 
x (h - al)al yP1 cos- p1 
2 

i - 1 4 +  ( t l)dtl  
i 

(h- t l )+iy  (h- t l ) - iy  

+ bounded terms. 
- P181 (h) 

(h - al)al yP1 cos- p 1  
- - 

x 
2 

+ bounded terms . g2 (h) - - 
x (b2 - h)P2yP1 cos p1 

i 
(t2 -h) + iy 

i 
(t2 - h) - iy 1$2 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

The two components of the stress intensity factor k, , kv are then found to be 
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B A  g2 (h) 
+(----) 

P l g l  (h) 
x (b2 - h)P2yh sin - p1 2 2  

-B 
R 

2 (h --al)OLi yp1 sin - p1 
2 

+ bounded terms , 0182 (4 
(b2-h)P2yP1 sin-& x + A  

2 
(5.60) 

B A  g2 (4 
+(---) 

(-P1> g l  (h) 
-B 

x (b2-h)p2yP1 cos-pl x 
2 (h - al)ai yP1 cos- p1 

2 

These can be written as 

(5.61) 
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Since, by definition 

b2-h K 2 +  1 
g2(h) = ( T ) % + p 2  ooT - F; (-1). 

4 k  

where PI=% and a1=P2= 1/2 ,  equations (5.61) may also be expressed as 

k *  b2-h 
-F1(+l)+{ -B- ( l  -2P1)A } (T)plF:(-l)], 
P1 

(a) 

(5.63) 

h - a  ~ 1 + 1  
[IA-(1-2P, )B I(+- 

k.r 2 cos-p, n (2)1/1+2 %+' 
1 1 1 = ( - ) P I  cor- 

2 

1 being the total crack length ( 1  = b2-al )  . 
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5.5 Edge crack going through the interface 

In this case, as in section L5.41 the stresses at the end points b2 and 

bl=a2=h are unbounded (see Figure 4-11, but the stresses at al=O is bounded. 

Equations (5.39), (5.61) (a,b) are still valid for stress intensity factor at the crack 

tip b, and at the interface b,=%=h respectively, provided we let al=O , 
al =O , P1 =%, and use the definition of gl (h) and g2 (h) in equation (5.62). It may 

then be shown that 

1 b2-h 
{ -B-(1-2P1)A } (T)pl F;( - l ) ] .  c L 2 *  --F + 1 +  

cL1 1( (2)1/2+2+P1 (5.65) 

(5.66) 

where 1 is the total crack length. 
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Chapter 6 
RESULTS AND DISCUSSION 

As examples for the thermal shock crack problem two material 

combinations are considered. Material pair A corresponds to an austenitic 

stainless steel layer (material 1) and a femtic steel base (material 2) which have 

the same elastic constants but different thermal properties 111. Material pair B 

represents a ceramic coating (material 1) on a ferritic steel base (material 2) in 

which both the mechanical and the thermal properties are different. Since the 

problem is formulated in terms of dimensionless quantities, it is sufficient to 

consider only the ratios between the properties of the two material combinations 

shown in Table 6-1. 

6.1 Model I 
Figures 6-1 - 6-10 show the normalized transient temperature and 

thermal stresses distribution in material pair A given by equations (2.17) and 

(2.35) for z o = O  , and (2.26) and (2.35) for T ~ >  0 . The temperature plots 

representtheratioO(x*,T)/Oo(O=O1forO<x<h, a n d 0 = 0 2 f o r h < x < - ) a s a  

function of non-dimensional distance x * = x / h  for various values of non- 

dimensional time (Fourier Number) z and T~ defined by 

*OD1 , To=-, 
f4 7s- 
h2 h2 

where to is the actual duration time of the cooling ramp on the surface (see 

Figure 2-3(b)). The non-dimensional thermal stresses o>yl~oT are plotted in the 

same way, where 

a; E ,  0, 
GOT = - 

l -v ,  * 
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From Figures 6-1 - 6-10 it is clear that, the derivative of the temperature 

distribution, that is, the heat flux and the thermal stresses on (o,,,,=oln for 

O < X < h ,  on= 02n for h < x < w )  are discontinuous at  the interface. The 

discontinuity in the slope of the temperature, i.e., the heat flux, is due to the 

difference in the thermal conductivity of the two materials (see boundary 

condition (2.5)(c) or (2.19)(c)). Also, the discontinuity in the thermal stresses 

results from the difference in the coefficient of thermal expansion across the 

interface which is given by (see equations (2.33) or (2.35)) 

since, there is no discontinuity in the temperature field itself Ol(h,t) = 02(h, t )  and 

E1=E2 , v1=v2 in material pair A. The influence of the ramp cooling zo on the 

transient temperature and thermal stresses, particularly for small values of 

time, are also shown in Figures 6-1 - 6-10. As the rate of cooling surface 

temperature (zo> increases, the transient thermal stresses decrease. 

The normalized stress intensity factors (SIF) for various crack geometries, 

subjected to thermal history shown in Figures 6-1 - 6-10, in material pair A are 

given in Figures 6-11 - 6-23. Figure 6-11 shows the variation of normalized SIF, 

k(bl)/oord<, for various edge crack lengths in material 1 (ul = 0, b,  <: h) and for 

zo=O as a function of Fourier Number z . Note that, since the material pair A 

have the same mechanical properties, i.e. E1=E2 , v1=v2 , the normalized SIF 

would approach the uniformly loaded half plane solution of 1.1215 as z + -. The 

influence of the cooling rate zo on the surface x = O  for a k e d  edge crack b,/h = O S  

is shown in Figure 6-12. It is clear that, for small time z, this influence could be 

quite considerable, and the normalized SIF decrease as zo increases. Figure 6-13 

shows the effect of zo on the normalized SIF, k(bl) /ooTdc,  for an edge crack 
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terminating at the interface (al=O , b,=h).  Since, E,=E2,v1=v2 in material pair 

A, the stress state at the crack tip b,  = h has a square root singularity and the 

normalized SIF would again approach the uniformly loaded half plane solution 

of 1.1215 as z + m. 

Figures 6-14 - 6-15 show the normalized SIF for an under-clad crack at 

the crack tips a,, b, ( a2=h , h c b, c ) , k(%)/croTd@ , k(b2)/aoTd@ , for 

various crack length and for zo=O as a function of time (Fourier Number). Since 

E 1 = E 2  , v1=v2 , the singularity a t  the crack tip a,=h is the square root. The 

asymptotic values of the normalized SIF as z +- is depicted in the same 

Figures. The influence of to on the normalized SIF for an under-clad crack with 

fixed length l,/h=1.0 is shown in Figures 6-16 - 6-17. It appears from the 

Figures that for small values of time, this influence could be quite sigmficant. 

The results of an edge crack crossing the interface are shown in Figures 

6-18 - 6-19. In Figure 6-18 the normalized SIF at the crack tip b,, ( al=O , 
b,  =a2=h , h e b, e w), k(b2) /oOT4 , for various crack lengths and for .ro=O are 

shown as a function of time. Note that, the tensile and shear stresses at the 

interface (b,=a,=h) are bounded, since the mechanical properties of the 

material pair A are the same, Le. E,=E,, v1=v2. Figure 6-19 shows the effect of 

.ro on the normalized SIF for fxed crack length Z/h=4.0. The limiting values of 

the normalized SIF as z + - are also shown in Figures 6-18 and 6-19. 

Figures 6-20 - 6-23 show the results of an internal crack crossing the 

interface. The transient normalized SIFs at  the crack tips u1 and b2 , (al > 0 , 

bl=h=a2 , b, c -) , k ( u , ) / c r o T d ~  , k(b2)/croTd@ , for various crack length are 

given in Figures 6-20 - 6-21. There is no stress singularity at the interface, since 

E,=E,,  v1=v2. Figures 6-22 - 6-23 show the influence of the ramp cooling as 

measured by zo on the normalized SIF at the crack tips a, and b, for a fxed 

crack length al/h=0.2,  b2/h=2.0. 
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The results for the material pair B are given in Figures 6-24 - 6-38. The 

normalized transient temperature and thermal stress distributions for various 

ramp durations (zd are shown in Figures 6-24 - 6-29. Again, the discontinuity in 

the thermal stresses at the interface (x=h) is given by (see equations (2.33) or 

(2.35)) 

Note that in this case , E2 f E, , v2 =vl , and 0, = 0, at the interface. 

Figure 6-30 shows the normalized SIF for an edge crack in material 1 

(al=O , b,  e h)  for various crack lengths and for zo=O. Since the materials in pair 

B have different mechanical properties and since E ,  > E,, the normalized SIF 

would approach infinity as b, + h, but for very small value of b,, it would 

approach to the half plane uniform load solution, 1.1215. Figure 6-31 shows the 

effect of ‘to for a fixed edge crack b,/h=0.5. The results for an edge crack 

terminating at the interface (a, = 0 , b, = h) are shown in Figure 6-32 for different 

values of T@ In this case the singularity at the crack tip b, = h  is p1 =0.552538. 

Figures 6-33 - 6-38 show the results of an edge crack going through the 

interface (al=O , b,=a,=h , h e b, c -1. Figures 6-33 - 6-35 give the normalized 

SIFs at the interface and at the crack tip b,, k,/a,*IPi, kq/oo*IPi, k(b,)/o,*di, for 

various crack lengths and for zO=O. The values of k, and k9 control the tensile 

and shear cleavage stresses at the interface, (x=h,  y > 0) (see equations (5.42) 

and (5.43)), where the singularity at the interface is p,=0(2=0.01872238. The 

influence of T~ on the normalized SIF is also shown in Figures 6-36 - 6-38 for a 

fixed crack length b2/ h = 2.0. 

If the transient thermal stresses are sufficient to cause yielding through 

the thickness of the clad, the stress intensity factors for an under-clad crack can 
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be analyzed by using a simple plastic strip model which assumes that the 

yielding in the clad is restricted to a very thin layer in the plane of the crack. 

Thus, the solution can be obtained by changing the boundary condition (2.49Xb) 

as 

o,,(x,O) = - olqx)+oF ; 0 e x e h , 

where oF is the average plastic flow stress. The normalized stress intensity 

factor at the crack tip b2 is given by 

where k;(b2) is the stress intensity factor for an edge crack going through the 

interface subjected to - olT(x) (0 c x e h )  and - o,~(x)  ( h  < x e b2), and k;(b2) is 

the stress intensity factor for an edge crack crossing the interface subjected to 

oF (0 c x < h).  The values of kI(b2) are given in Table 6-2, which shows the effect 

of clad yielding on the stress intensity factors. The SIFs decrease as the crack 

length increases. The comparison between the values of stress intensity factors 

as T -+ = for yielded clad and elastic clad for difTerent values of crack length and 

oF/ooT are shown in Table 6-3. It appears that, as ooT becomes larger, yielding 

in the clad will result in a much higher stress intensity factor at b,. 

6.2 Model 11 
To verify the computer program, the SIF for an edge crack in a 

homogeneous strip (E1 = E2 , v1 =v2 , x = 0) under uniform load is calculated and 

compared with the results obtained by Kaya [41]. The results can be found in 

Table 6-4. 

The problem of a crack terminating or going through the interface in two 
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bonded half planes can be obtained by letting the crack length very small 

compared to h,  and h,. The normalized SIF for these two cases are calculated for 

material pair Aluminum and Epoxy and compared with the results obtained by 

Kaya [411 and Erdogan and Biricikogh [29], which can be found in Tables 6-5 

and 6-6. 

To see the effect of the elastic foundation on the SIF for a homogeneous 

strip, the normalized SIF for x > 0 (which is related to R,/L through equations 

(2.106) and (2.116)) are calculated and compared with the results for x = O ,  (see 

Table 6-4). Also, the effect of the elastic foundation x on the normalized SIF for 

a homogeneous strip with a fixed edge crack b , /L=0 .5  are shown in Table 6-7. In 

this Table, the limiting case x = O  means that the homogeneous strip has no 

elastic foundation. The case x = w  correspond to uniformly loaded strip of 

thickness 2L having symmetrically located coplanar edge cracks of depth b, on 

both surfaces. Note that in this case u(L ,y)=O , 09(L,y)=0 , -OQ c y e w . As 
expected, the SIF is decreased for increasing x.  

To show the comparison between the homogeneous strip on an elastic 

foundation x ( which is related to R , / L  through the equation (2.106)) and a 

homogeneous cylinder the normalized SIFs for an edge crack under uniform 

tension are calculated and tabulated in Table 6-8 (see Nied [421 for cylinder 

results for Ri/L=9.0) . Also, the comparison between the transient temperature, 

thermal stress distribution and normalized SIF for the homogeneous strip on an 

elastic foundation and a hollow cylinder obtained from Nied [43] for Ri/L=9.0  , 

are shown in Tables 6-9, 6-10, and 6-11, respectively. 

Figures 6-39 - 6-62 show the normalized transient temperature and the 

thermal stress distribution in material pair A given by equations (2.80) and 

(2.100) for zo=O, and equations (2.86) and (2.100) for zo > 0. The normalization of 

the temperature and the stress is similar to in Model I, varying with the 
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nondimensional distance x* = x / h l  and nondimensional time (Fourier Number) 

T = t D 1 /  hf. The results are given for different values of %/hl  = 3.0,9.0,24.0, and 

different values of cooling rate as measured by T~ = t@,  / h:, where to is the actual 

duration of the ramp cooling. The discontinuity in the slope of the temperature 

as well as the thermal stress have already been discussed in the previous 

section [6.1] for Model I. It is clear from the Figures that, a t  any instant in time 

and for b e d  h2/h ,  , the transient thermal stresses decrease as T~ increases. 

The normalized SIFs for various crack geometries and different values of 

T~ and % / h l  =3.0,9.0,24.0 in material pair A are shown in Figures 6-63 - 6-107. 
These results correspond to the thermal history shown in Figures 6-39 - 6-62. 
The stiffness of the elastic foundation x are taken to be function of R i / L  through 

the equation (2.106), where Ri is the inner radius of the cylinder and L is the 

total thickness (h, +h,). All the results are calculated based on Ri/L=9.0 , which 

means that the thickness L = h, + h, is fured, but the ratio h, / h ,  is varied. 

The results of the normalized SIF for an edge crack in material 1 (al = 0 , 

b, < h l )  , k(bl)/ooTd< , are shown in Figures 6-63 - 6-74. The variation of 

normalized SIF with time T, for various edge crack lengths for h,/h,=3.0 , 
T ~ = O . O , ~ . O  , h,/h,=9.0 , ~~=0.0,10.0 , and h2/h,=24.0 , ~ ~ = 0 . 0 , 2 0 . 0  are shown in 

Figures 6-63 - 6-64, Figures 6-67 - 6-68, and Figures 6-71 - 6-72, respectively. 

Also, Figures 6-65 - 6-66, Figures 6-69 - 6-70, and Figures 6-73 - 6-74 show the 

influence of the cooling rate z0 for a fmed edge crack and %/hl=3.0, 

b1/h1=0.2,0.9 , &/hl=9.0, b,/h,=0.2,0.9 , and %/h1=24.0, b1/h,=0.2,0.9 , 
respectively. It is clear that, as the cooling rate or T~ increases, the maximum 

normalized SIF decrease. Noting that, the total thickness L of the clad and base 

material is fured, and as h,/h, increases the clad thickness h,  decreases with 

respect to h,. So, by comparing Figures 6-63, 6-67 and 6-71 in which T,=O.O and 
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h2/h1  =3.0,9.0,24.0 respectively, and by normalizing the crack length by L, i.e. 

Z,/L instead of l l /h l  , it can be seen that the maximum SIF for fixed edge crack 

length ( I1 /L)  would decrease as % / h l  is increased, (see [ll). In the case of broken 

clad the influence of zo for $/hl = 3.0,g.O ,24.0 are shown in Figures 6-75 - 6-77. 
The normalized SIF for under-clad crack at the crack tips %,b2 (a2=hl , 

b 2 > h l )  , k(a2>/ooT’i@ , k(b2)/oOT’i12/2 are shown in Figures 6-78 - 6-95. The 

normalized SIF at the crack tips, for various crack length for $/h,=9.0 and 

zo=O.O,lO.O are shown in Figures 6-80 - 6-83. It is apparent that, initially the 

two crack tips have negative SIF, and then reach maximum values at different 

times. Also, it is clear that, the maximum normalized SIF at the crack tip b2 is 

dropping faster thag that a t  the crack tip just touching the interface (u2=hl). 

The slope discontinuity in Figure 6-83 is due to the ramp function and takes 

place z=zo= 10.0. Figures 6-88 - 6-91 show the normalized SIF at the crack tips 

for h,/h, =24.0, zo=O.O ,20.0. The transient behavior of the normalized SIFs at the 

crack tips u2=hl and b, for 12/h,=9.0 and z0=0.0,20.0 is shown in Figure 6-88 

and Figure 6-90. The results of the normalized SIF at the crack tip b, for various 

crack length for h2/h1=24.0 and zo=0.0,20.0 are also shown in Figure 6-89 and 

Figure 6-91. Again the slope discontinuity which appears in Figure 6-91 is due 

to the ramp cooling and takes place at 2=z0=20.0 . The influence of the cooling 

rate or T~ on the behavior of the normalized SIF for fured length of under-clad 

crack and for h,/h,=3.0, Z2/h,=0.004 , $/hl=9.0, Z2/hl=1.0,3.0 , and $/h,=24.0, 

Z2/h,=0.5,4.0 , at the crack tips %,b2 are shown in Figures 6-78 - 6-79, Figures 

6-84 - 6-87, and Figures 6-92 - 6-95, respectively. 

The transient normalized SIFs for an edge crack going through the 

interface (al=O , b,=%=hl , b2 > h,) are plotted in Figures 6-96 - 6-107. Figures 

6-96 - 6-97, Figures 6-100 - 6-101, and Figures 6-104 - 6-105 show the variation 

as a function of time z for various crack length and for h,/h,=3.0, z0=0.0,6.0, 
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h2/h1=9.0, ro=0.O, 10.0 , and %/h1=24.0, 2,=0.0,20.0, respectively. The influence 

of zo on the normalized SIF for fixed crack length for %/h,=3.0, b2/h,=1.2,2.0 , 

h2/h,=9.0, b2/h,=1.5,4.0 , and h2/h,=24.0, b2/h,=1.5,5.0, are shown in Figures 

6-98 - 6-99, Figures 6-102 - 6-103, and 6-106 - 6-107, respectively. It is seen that 

for any given crack length the normalized SIF increases until it reaches a 

maximum value and then decreases as z increases. Also, as the cooling rate or zo 

increases the maximum value of the normalized SIF decreases for any fixed 

crack length. 

Tables 6-12 - 6-14 give the maximum of normalized SIFs for an under-clad 

crack (a2=hl , b, > h,) , and their comparison with the results obtained by Nied 

[l]. Similarly Tables 6-15 - 6-17 give the maximum of normalized SIFs for an 

edge crack crossing the interface (al=O , bl=a2=hl , b2>h1,zo=0.0) and their 

comparison with the results of Nied [ll. Note that, in this study the analytical 

solution of the temperature, thermal stresses and the crack problem is based on 

R , / L  being very large. In Nied's work [l], Ri/L=9.0 which still corresponds to a 

relatively thick cylinder. 

The normalized transient temperature and thermal stress distributions in 

material pair B for %/hl =9.0 as given by equations (2.80) and (2.100) for zo=O.O 

, and equations (2.86) and (2.100) for zo > 0 , are shown in Figures 6-108 - 6-115. 
The stress discontinuity at the interface is due to the difference in Young's 

modulus and coefficient of thermal expansion ( E ,  # E2 , ai # $1. 

Figures 6-116 - 6-117 represent the transient normalized SIF for various 

lengths of an edge crack (al=O , b,  e h,) for zo=O.O,lO.O. It is clear that, since 

E ,  > E2 , the maximum normalized SIF would increase to m as b,  approaches the 

interface. The effect of zo on the normalized SIF for an edge crack having a fixed 

length bl/hl=0.2 is shown in Figure 6-118. The influence of zo on the normalized 

SIF for broken clad (a,=O , b,=h,) is shown in Figure 6-119, in this case the 
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singularity at the crack tip b ,=h ,  is equal to p,=O.552538 . As expected, the 

singularity is greater than 1 /2 because E ,  > E,. 

In case of under-clad crack for material pair B (a2=hl , b, > hl) , the 

normalized SIF k(a2)/ooT(Z2/2)% , k(b2)/ooTdZ2/2 , at the crack tips 3 , b 2  for 

?,=0.0,10.0 are shown in Figures 6-120 - 6-121, and Figures 6-122 - 6-123, 
respectively. Since the crack touches the interface from material (2) and since 

E ,  > E ,  , the singularity is less than 1/2 , and is equal to  %=0.4512416. The 

effect of the cooling rate or zo on the normalized SIFs at the crack tips %=hl and 

b, for a fixed crack length f 2 / h ,  = 1.0 is shown in Figures 6-124 - 6-125. 

- 

The normalized SIFs for an edge crack crossing the interface (al=O , 

bl=a2=hl , b, > h,) in material pair B, for zo=O.O and 10.0 are shown in Figures 

6-126 - 6-128, and Figures 6-129 - 6-131, respectively. The normalized SIFs 

kx/oOTPi , kV/ooTPi control the tensile and shear cleavage stresses at the 

interface. The singularity at the interface is equal to  pl=cl,=0.01872238 . The 

influence of zo on the normalized SIFs at the interface x = h ,  , y > 0 , and the 

crack tip b, for a fixed crack length b2/h1=1.5 , is shown in Figures 6-132 - 
6- 134. 

6.3 Conclusions 
Very often in transient thermal stress analysis it is assumed that the 

relevant thermal boundary condition is a step change in temperature which is 

used as a model to describe the sudden cooling or heating at the boundary. In 

the case of cladded pressure vessels, the temperature of the inner wall of the 

cylinder is suddenly brought down to the temperature of the cooling liquid (from 

288" c to 20" c). A simple calculation would show that under this idealized 

thermal boundary condition the maximum thermal stress in the clad would 

exceed the corresponding yield strength of the material (which, for austenitic 
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steel, is 390 MN/m2 ). It is therefore, clear that in this case the unit step function 

in temperature is not a realistic representation of the actual boundary 

condition. By using a more realistic thermal boundary condition such as ramp 

function with cooling rate measured by the ramp duration T ~ ,  the peak values of 

the thermal stresses as well as the maximum stress intensity factors are shown 

to reduce below the corresponding values given by the step function 

temperature boundary condition. 

In Model I it is seen that the stress intensity factors are monotonically 

increasing functions of time. This implies that in this case the fracture process 

would be unstable. On the other hand in the composite plate represented by 

Model 11, invariably the stress intensity factors increase, going through a 

maximum and then tend to their steady state values asymptotically. In some 

cases the under-clad crack may have initially negative stress intensity factors. 

In such cases it should be understood that the negative stress intensity factors 

may have a meaning only when they are used in a superposition with other 

loading conditions in such a way that the resulting stress intensity factor is 

positive. 

The transient thermal stresses are strongly dependent on the material 

properties. Thus, the steady state thermal stresses and consequently the 

corresponding stress intensity factors for material pairs A and B are found to be 

opposite in sign. 

The results show that the initial flaw (the edge or the internal crack) in a 

coated medium subjected to transient thermal loading generally tend to 

propagate towards the interface. Since the power of singularity for a crack 

terminating at  the interface is not 1/2, the propagating crack would slow down 

and possibly be arrested if it  is located in the less stiff side of the interface and 

would grow faster if it is in the stiffer material. The process of the propagating 
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crack to cross the interface would be controlled by the relative magnitudes of 

material toughness and energy release rate. 

The effect of the clad yielding on the stress intensity factors for an under- 

clad crack in Model I was investigated and it was shown in Table 6-3 that for a 

fixed crack length the stress intensity factor is higher in the yielded clad case 

than that for the elastic clad. Also, as the thermal stresses increase yielding in 

the clad would cause an increase in the stress intensity factor. 

As expected, it was found that an increase in the stiffness ( x )  of the elastic 

foundation would cause a decrease in the stress intensity factors as it increased. 

The results for the beam on an elastic foundation showed very good 

agreement with that obtained from the axisymmetric elasticity solution for a 

thick-walled cylinder, indicating that the model can be used quite satisfactory to  

study the highly complicated problem of a composite cylinder containing a 

circumferential crack. 

6.4 Suggestions for Future Research 

The way by which the crack problem in a composite beam on an elastic 

foundation was formulated in this study would benefit the future research as an 

extension of our work in the following areas : 

i. The cracking of layered materials perpendicular to  the interface 
with a stress free boundary ( x = O )  under residual and transient 
thermal stresses. 

ii. The cracking of fully constrained layered materials perpendicular 
to the interface under residual and transient thermal stresses. 

Other interesting problems can also be done in the future such as : 

iii. The cracking of layered materials along the interface with free and 
fully constrained boundaries under residual and transient thermal 
stresses. 
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iv. The cracking of layered materials perpendicular to and along the 

v. The "free-end' problem in bonded layers under thermal cycling. 

interface under residual and transient thermal stresses. 
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Table 6-1: Properties of materials pairs used in this work 

k ; l k ;  DJD, qQ; E,  I E ,  

material pair A 3 3 0.76 1 
material pair B 3.386 4.070 2.2939 0.6111 

u, I 

1 
1 

Table 6-2: Normalized stress intensity factor for an embedded crack (equation 
(6.611, obtained from the plastic strip model, oo=O.O, 

aoT=-aiEl Oo/ 1 -vl, for Mqdel I. (Material pair A) 

k ( b , )  / u o T d @  as r - 00 (yield clad) 

0.026 
1 .o  
4.0 
6.6 

k ( b 2 ) / u o T d @  as 7 - 00 

9.8776 
1.9008 
1.4046 
1.3460 

0.026 
1.0 
4.0 
6.6 

- 8.9660 
- 0.8364 
- 0.2698 
- 0.1682 

0.92167 
1 .06639 
1.14489 
1.17684 

Table 6-3: Comparison of the normalized stress intensity factors obtained from 
a yielded clad and an elastic clad for various values of the crack 
length, ~ ~ = 0 . 0 ,  aoT=-aiE1 Oo/ l  -vl, for Model I.(Material pair A) 

I ,  / h I uF/ uoT=l 

6.39969 
1.48309 
1.27478 
1.26092 

1 / 5  

8.08640 
1.73372 
1.36272 
1.31138 

I/LoI (elastic clad) 

8.98201 
1.81726 
1.37870 
1.32820 

0.7664 
0.7740 
0.8286 
0.8632 
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Table 6-4: Normalized stress intensity factors for an edge crack in a 
homogeneous strip of thickness L under uniform load oo (without 
elastic foundation, x = 0.0 and with elastic foundation R, /L  = 9.0 and 
x L / E  = 0.01 108 ) 

Kaya 
present work 

0.001 
0.1 
0.2 
0.3 
0.4 
0.6 
0.0 
0.7 
0.8 
0.86 
0.9 

0.0956 
0.0983 

1.1215 
1.1892 
1.3073 
1.8699 
2.1114 
2.8246 
4.0332 
6.3649 
11 -966 
18.628 
34.632 

present work 

1.1216 
1.1892 
1.3673 
1.6699 
2.1114 
2.8246 
4.0332 
6.3663 
11.968 
18.636 
34.641 

k ( b , )  / uo dbl , R, / L = 9.0 

1.1216 
1.1674 
1.2726 
1.4267 
1.5983 
1.8136 
2.0776 
2.3801 
2.7399 
2.9836 
3.3000 

Table 6-5: Normalized stress intensity factors for a crack terminating at  the 
interface under uniform load oo, (12/hl =0.1 in the present work). 

Aluminum-Epoxy 
u =0.3 , v2=0.36 1 
p1/p2=23.077 

a2=0. 3381 

Epoxy-Aluminum 

p1/p2=0.0433 

Y1'0.36 , v2=0.3 

Q2=0. 8248 

o . aaze 
0.8842 

1.3398 
1.3403 
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Table 6-6: Normalized stress intensity factors for an embedded crack going 
through the interface under loading P, / P 2  = (E1 /E2)(1 -vi/  1 -vl), 
Vl=o.3, v2=0.35, p1/k=23.077, p=p1=%=o.273692, l l /h ,=O. l ,  

2 

2,/h,= 0.05,0.025. 

- 0.02034 
- 0.02168 

- 0.03088 
- 0.03184 

1 

1.6628 
1.6661 

2.1320 
2.1391 

0.6 

0.26 

- ~ 

1.2406 
1.2378 

1.3409 
1.3324 

present work 
Erd. & Biri. 

present work 
Erd. P B i r i .  

k* 

~~ 

- 0.06127 
- 0.06900 

- 0.08466 
- 0.08113 

Table 6-7: Normalized stress intensity factors for an edge crack in a 
homogeneous strip of thickness L under uniform stress o0 and for 
fured crack length bl/L=0.5,  various values of x (stiffness of the 
elastic foundation) 

0.0 

1 o3 
106 
lo9 
1012 
1016 
1020 
33 

2.8246 
2.8238 
2.6282 
1.8840 
1.2000 
1.1683 
1.1601 
1.1646 
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Table 6-8: Comparison between normalized stress intensity factors for an edge 
crack under uniform loading a0 in a homogeneous strip on an elastic 
foundation x,  and a homogeneous cylinder R , / L  = 9.0. 

0.1 
0.2 
0.3 
0.4 
0.6 
0.6 

cylinder I etrip 

1.168 
1.263 
1.392 
1.668 
1.779 
2.026 

1.1674 
1.2726 
1.4267 
1.6983 
1.8136 
2.0775 

125 



Table 6-9: Comparison between transient temperature distribution O/O, for a 
hollow cylinder and a homogeneous strip on an elastic foundation x 
due to a unit step temperature change on the inner wall, R,/L=9.0 
and x L / E  = 0.01 108, T = fD/ L2. .9 

i Nied 

I 
0.00 
0.06 
0.10 
0.16 
0.20 
0.26 
0.30 
0.36 
0.40 
0.46 
0.60 
0.66 
0.80 
0.06 
0.70 
0.76 
0.80 
0.86 
0.90 
0.96 
1 .oo 

1.000 
0.723 
0.477 
0.280 
0.160 
0.078 
0.033 
0.013 
0.006 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

present work 

1.000 
0.724 
0.480 
0.288 
0.167 
0.077 
0.034 
0.013 
0.006 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

- 8 / 8, , T =  0.05 

Nied 

1.000 
0.872 
0.748 
0.630 
0.621 
0.423 
0.337 
0.203 
0.201 
0.161 
0.111 
0.080 
0.060 
0.038 
0.026 
0.017 
0.011 
0.007 
0.006 
0.003 
0.003 

present work 

1 .Ooo 
0.874 
0.762 
0.636 
0.627 
0.429 
0.343 
0.268 
0.206 
0.166 
0.114 
0.082 
0.068 
0.040 
0.027 
0.018 
0.012 
0.007 
0.006 
0.003 
0.003 
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table 6-9, continued 

Q/Q,  , r = O . 1  

0.00 
0.06 
0.10 
0.16 
0.20 
0.25 
0.30 
0.35 
0.40 
0.46 
0.60 
0.66 
0.60 
0.66 
0.70 
0.75 
0.80 
0.86 
0.90 
0.96 
1 .oo 

8/63, , r = 0 . 5  

Nied 

1 * 000 
0.908 
0.818 
0.731 
0.648 
0.568 
0.494 
0.426 
0.363 
0.307 
0.267 
0.213 
0.176 
0.144 
0.117 
0.096 

0.066 
0.066 
0.060 
0.048 

0.078 

present work Nied 

I 

1.000 
0.911 
0.823 
0.737 
0.666 
0.676 
0.602 
0.434 
0.371 
0.316 
0.264 
0.220 
0.181 
0.149 
0.121 
0.099 
0.081 
0.067 
0.068 
0.063 
0.061 

0.999 
0.967 
0.937 
0.906 
0.877 
0.848 
0.820 
0.794 
0.769 
0.746 
0.723 
0.703 
0.686 
0.668 
0.864 
0;641 
0.631 
0.623 
0.617 
0.614 
0.613 

preeent work 

1 .ooo 
0.971 
0.842 
0.913 
0.886 
0.868 
0.832 
0.806 
0.782 
0.769 

0.718 
0.700 
0.684 
0.670 
0.667 
0.647 
0.639 
0.634 
0.630 
0.629 

0.738 
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Table 6-10: Comparison between Stress distribution ow/oo for a hollow 

0.00 
0.06 
0.10 
0.16 
0.20 
0.26 
0.30 
0.36 
0.40 
0.46 
0.60 
0.66 
0.60 
0.66 
0.70 
0.76 
0.80 
0.86 
0.90 
0.96 
1 .oo 

cylinder and a homogeneous strip on an elastii'foundation x due t o  
a unit step temperature change on the inner wall, Ri/L=9.0 and 
xL/E=O.O1108, T =tD/L2.  

Nied 

~ ~ ~~ 

0.892 
0.614 
0.369 
0.179 
0.048 

- 0.031 
- 0.074 
- 0.094 
- 0.103 
- 0.106 
- 0.107 
.- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 
- 0.107 

u / uOT , r =  0.05 w 

present work Nied 

0.8872 
0.6108 
0.3666 
0.1760 
0.0446 

- 0.0367 
- 0.0789 
- 0.0996 
- 0.1082 
- 0.1114 
- 0.1124 
- 0.1127 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 
- 0.1128 

0.768 
0.630 
0.606 
0.388 
0.280 
0.182 
0.096 
0.022 

- 0.040 
- 0.091 
- 0.131 
- 0.162 
- 0.186 
- 0.203 
- 0.216 
- 0.224 
- 0.230 
- 0.234 
- 0.237 
- 0.238 
- 0.239 

I 

present work 

0.7477 
0.6231 
0.4896 
0.3828 
0.2748 
0.1768 
0.0906 
0.0161 

- 0.0464 
- 0.0976 
- 0.1386 
- 0.1703 
- 0.1945 
- 0.2126 
- 0.2264 
- 0.2346 
- 0.2308 
- 0.2449 
- 0.2474 
- 0.2488 
- 0.2492 
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table 6-10, continued 

0.00 
0.06 
0.10 
0.16 
0.20 
0.26 
0.30 
0.36 
0.40 
0.46 
0.60 
0.66 
0.60 
0.66 
0.70 
0.76 
0.80 
0.86 
0.90 
0.96 
1 .oo 

Nied 

0.666 
0.666 
0.475 
0.388 
0.304 
0.226 
0.161 
0.083 
0.020 

- 0.036 
- 0.086 
- 0.130 
- 0.167 
- 0.200 
- 0.226 
- 0.248 
- 0.266 
- 0.279 
- 0.288 
- 0.293 
- 0.296 

present work 

~ 

0.6432 
0.6642 
0.4663 

0.2979 
0.2194 
0.1467 
0.0772 
0.0146 

0.3806 

- 0.0420 
- 0.0926 
- 0.1369 
- 0.1754 
- 0.2082 
- 0.2356 
- 0.2681 
- 0.2759 
- 0.2894 
- 0.2988 
- 0.3043 
- 0.3061 

u / u o T ,  r = 0 . 5  
YY 

Nied 

0.261 
0.220 
0.189 
0.169 
0.129 
0.100 
0.073 
0.046 
0.021 

- 0.002 
- 0.025 
- 0.046 
- 0.063 
- 0.080 
- 0.094 
- 0.106 
- 0.117 
- 0.126 
- 0.130 
- 0.134 
- 0.136 

present work 

0.2361 
0.2069 
0.1780 
0.1496 
0.1216 
0.0942 
0.0677 
0.0423 
0.0181 

- 0.0047 
- 0.0261 
- 0.0469 
- 0.0639 
- 0.0801 
- 0.0943 
- 0.1066 
- 0.1166 
- 0.1246 
- 0.1302 
- 0.1336 
- 0.1347 
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Table 6-11: Comparison between normalized stress intensity factors for an edge 
crack subjected to transient thermal stresses in a hollow cylinder 
and a homogeneous strip on a n  elastic foundation x,  Rj /L=9 .0  and 
XL / E  = 0.0 1 1 08, T = tD / L2, 0 0 ~  = -a. E 0, / (1 - v). 

b , / L  I k ( b J / o ; 4 ,  7=0.01 

0.01 
0.1 
0.2 
0.3 
0.4 
0.6 
0.6 

I 
Nied 

0.962 
0.667 
0.428 
0.300 
0.238 
0.206 
0.186 

present work 

0.9666 
0.6632 
0.4316 
0.3072 
0.2402 
0.2066 
0.1868 

Nied 

0.833 
0.701 
0.689 
0. 601 
0.432 
0.378 
0.334 

present work 

0.8214 
0.6913 
0.6816 
0.6094 
0.4363 
0.3793 
0.3369 

b ,  / L 1 k ( b l )  / .gTq , f = 0.1 

present work I Nied present work I Nied 

0.01 
0.1 
0.2 
0.3 
0.4 
0.6 
0.6 

0.724 
0.833 
0.600 
0.602 
0.463 
0.408 
0.367 

0.7093 
0.6207 
0.6689 
0.6069 
0.4636 
0.4086 
0.3887 

0.277 
0.247 
0.224 
0.206 
0.190 
0.174 
0.168 

0.2608 
0.2327 
0.2147 
0.1997 
0.1828 
0.1677 
0.1628 

I 
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Table 6-12: The maximum of normalized stress intensity factors for an under- 
clad crack subjected to transient thermal stresses, % / h l  =3.0, 
Ri/L=9.0  and xL/E2=0.01108. (material pair A). 

N i e d  

0.004 
0.040 
0.200 
0.400 
0.600 

present work 

7 = 0.0 7 = 0.0 7 =  1.0 

0.0114. 
0.0101 
0.0046 

- 0.0022 
- 0.0090 

0.0005 
0.0027 

- 0.0138 
- 0.0333 
- 0.0614 

I 

0.0061 0.0048 0.0111 
0.0073 

- 0.0088 
- 0.0277 
- 0.0453 

0.0068 
0.0066 
0.0000 

- 0.0071 
- 0.0142 

I I 1 1 
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Table 6-13: The maximum of normalized stress intensity factors for an under- 
clad crack subjected to transient thermal stresses, h / h , = 9 . 0 ,  
R, /L=9.0 and xL/E2=0.01108. (material pair A). 

1, / h: 
- 

0.01 
0.6 
1 .o 
2.0 
3.0 
4.0 

Nied 

T .‘- 
uo “ 1 2 / 2  

0.2246 
0.2160 
0.2080 
0.1961 
0.1800 
0.1618 

T =  0.0 

0.2240 
0.1897 
0.1689 
0.1030 
0.0623 
0.0066 

present work 

7 = 0.0 

0.2270 
0.2171 
0.2101 
0.1960 
0.1790 
0.1604 

0.2264 
0.1916 
0.1603 
0.1018 
0.0496 
0.0026 

7 =  10.0 

0.2032 
0.1946 
0.1883 
0.1749 
0.1604 
0.1434 

0.2027 
0.1717 
0.1437 
0.0906 
0.0429 

- 0.0002 
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Table 6-14: The maximum of normalized stress intensity factors for an under- 
clad crack subjected to transient thermal stresses, b / h l  =24.0, 
Ri/L=9.0  and xL/E2=0.01108. (material pair A). 

Nied preeent work I 
7 = 0.0 

I 1 
I 1 I 

0.026 
0.6 
1.5 
4.0 
9.0 
14.0 

0.3908 
0.3873 
0.3904 
0.4006 
0.3919 
0.3494 

0.3899 
0.3701 
0.3369 
0.2622 
0.1309 
0.0200 

7 = 0.0 7 = 20.0 

0.3900 
0.3941 
0.3300 
0.4067 
0.3942 
0.3620 

0.3971 
0.3766 
0.3436 
0.2667 
0.1306 
0.0166 

0.3877 
0.3842 
0.3886 
0.3974 
0.3074 
0.3463 

0.3869 
0.3677 
0.3365 
0.2612 
0.1286 
0.0161 
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Table 6-15: The maximum of normalized stress intensity factors for an edge 
crack subjected to transient thermal stresses, b / h l  =3.0, Ri/L=9.0  
and xL/E2=0.01108 . (material pair A). 

7 =  0.0 

Nied 

r =  6.0 7 =  0.0 

1.004 
1.2 
1.4 
1.6 
2.0 

0.4760 
0.4097 
0.3726 
0.3449 
0.3062 

present work 

0.4629 
0.4000 
0.3574 
0.3262 
0.2759 

0.3793 
0.3143 
0.2779 
0.2616 
0.2127 
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Table6-16: The maximum of normalized stress intensity factors for an edge 
crack subjected to transient thermal stresses, %/hl  =9.0, Ri/L=9.0 
and xL/E2=0.01108. (material pair A). 

Nied 

T = 0.0 

I 
1.01 
1.6 
2 . 0  
3.0 
4.0 
5 . 0  

0 6090 
0.4740 
0.4161 
0.3461 
0.3034 
0.2722 

present work 

T = 0.0 

0.6298 
0.6060 
0.4629 
0.4044 
0.3887 
0.3839 

0.6a98 
0.4683 
0.4196 
0.3761 

0.3667 
0.3589 
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Table 6-17: The maximum of normalized stress intensity factors for an edge 
crack subjected to transient thermal stresses, b / h l  = 24.0, R i / L  =9.0 
and xL/E2=0.01108 . (material pair A). 

0.7383 
0.0130 
0.6664 
0.4071 
0.3631 

l l h ,  

1.026 
1.6 
2.0 
6.0 
7.6 

0.7631 
0.0307 
0.6708 
0.4363 
0.4172 

Nied present work 

~~ 

7 = 20.0 

Tdi 
OO 

0.7372 
0.0168 
0.6689 
0.4282 
0.4110 
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.o 8 . 0  16.0 24.0 32.0 

z l h  
Figure 6-1: The normalized transient temperature distribution in Model I for 

‘ro=O.O, ‘ro=toD,/h2,  (Material pair A) 
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Figure 6-2: The normalized transient stress distribution o,,JooT in Model I for 

zo=O.O , ~ ~ = t ~ D , / h ~ ,  ooT=- a; El@o/(l-vl). (Material pair A) 
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Figure 6-3: The normalized transient temperature distribution in Model I for 
.so=lO.O, z o = t o D l / h 2 ,  (Material pair A) 
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Figure 6-4: The normalized transient stress distribution on/ooT in Model I for 

‘co= 10.0, zo= toDl /h2 ,  ooT=- a; E ,  Oo/(l-v,) (Material pair A) 
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Figure 6-5: The normalized transient temperature distribution in Model I for 

~ ~ = 2 0 . 0 ,  ‘o= toDl /h2 ,  (Material pair A) 
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Figure 6-6: The normalized transient stress distribution CT,JCT~* in Model I for 

2,=20.0, To=r0Dl/h2, ooT=- a; .!?l@o/(l-vl) (Material pair A) 
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Figure 6-7: The normalized transient temperature distribution in Model I 

.co=40.O, ~ o = t o D , / h 2 ,  (Material pair A) 
for 
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Figure 6-8: The normalized transient stress distribution G , , J O ~ ~  in Model I for 

T0=40.0 , ro=roDl/h2, oOT=- ai El@o/(l-vl) (Material pair A) 
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Figure 6-9: The normalized transient temperature distribution in Model I for 

2,=6O.O, T o = f o D l / h 2 ,  (Material pair A) 
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Figure 6-10: The normalized transient stress distribution o,,,/ooT in Model I 
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Figure 6-12: The influence of zo on the normalized stress intensity factor k(b l )  
as a function of nondimensional time z for an edge crack of length 
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Figure 6-17: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time z for an under-clad crack of 

length Z2/h=1.0 in Model I , ro=roDl/h2 , ooT=-~;E1@o/( l -~l)  
(Material pair A) 
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Figure 6-18: The normalized stress intensity factor k(b2) as a function of 
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crossing the interface of in Model I for zo=O.O , To=roDl/h2 , 
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Figure 6-19: The influence of T~ on the normalized stress intensity factor k(b2) 
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Figure 6-20 The normalized stress intensity factor k(al)  as a function of 
nondimensional time z for an embedded crack of various lengths 
crossing the interface in Model I for b 2 / h = 2 . 0 ,  .ro=O.O, To=toDl/h2 
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Figure 6-27: The normalized transient stress distribution o,,JooT in Model I 

for .r0=20.0, ‘to=roDl/h2, ooT=- a; E ,  Oo/(l -vl) (Material pair B) 

163 



0 
0 

VI 

0 a 

0 
to 

0 

1 
0 

a 
0 
v 

0 cu 

0 
0 

2 
r = t D , / h  00 

\ \ 200.0 

.o a .o 16.0 24.0 32 .O 

z l h  
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Figure 6-29: The normalized transient stress distribution o,,,,/ooT in Model I 
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Figure 6-31: The influence of ‘to on the normalized stress intensity factor k(b l )  
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Figure 6-38: The influence of ‘I:~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time ‘I: for an edge crack crossing 
the interface Z/h=2.0 in Model I , ‘I:o=roDl/h2 , 
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Figure 6-43: The normalized transient temperature distribution in Model I1 for 
2 T ~ = ~ . O ,  h,/h,=3.0, To=roDl/hl , (Material pair A) 
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Figure 6-47: The normalized transient temperature distribution in Model I1 for 
2 2,=6.O, h,/h,=9.0, .ro=roDl/hl , (Material pair A) 
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Figure 6-51: The normalized transient temperature distribution in Model I1 for 
2 z0=20.0, h,/hl=9.0,  rO=toDl/hl , (Material pair A) 

193 



0 
0 

0 
r n  

0 
0 

0 

I 

m 

9 

0 

h ,  / h ,  = 9.0 

z ro = 20.0 -c 

I 1 I I I 

7 . 5  10.0 .o 2.5 5.0 

Z l h l  

Figure 6-52: The normalized transient stress distribution G,,,/G~' in Model II 
for T ~ = ~ o . o  , h2/h,=g.0 , ~ o = t o D l / h l  , Go'=-ai E , ~ ~ / ( I - V , ) .  
(Material pair A) 

2 

194 



0 co 

s 
b 
0 
0 

X I  

.o 2 . 5  5.0 7 . 5  10 .o 

Figure 6-52, continued 

195 



0 
0 

d 

0 
Lo 

0 

\ 
a 
0 
0 
-3 

0 
(u 

0 
0 

240.0 
II\ \ 

\ \ \ \  \ \ 60.0 

l a .  75 25.00 .oo 6.25 12.50 

Figure 6-53: The normalized transient temperature distribution in Model I1 for 
T ~ = O . O ,  h2/h ,=24 .0 ,  ro=roDl/hl , (Material pair A) 2 

196 



Y t  

. 
I 7 = 2.0, 4.0 I 6.0 10.0 

h 2 / h l  = 24.0 

To = 0.0 

7 = 2.0, 4.0 I 6.0 10.0 

.- 

.oo 6.25 12.50 18.75 25.00 

Figure 6-54: The normalized transient stress distribution o,,,,/oOT in Model 11 
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Figure 6-55: The normalized transient temperature distribution in Model I1 for 

T ~ = ~ . O ,  h, /h ,=24.0 ,  To=roDl/h:, (Material pair A) 
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Figure 6-57: The normalized transient temperature distribution in Model I1 for 
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for ro= 10.0 , h,/h,=24.0 , ~ ~ = t ~ D ~ / h :  , oOT=- ai E ,  @o/(1 -VI>. 

(Material pair A) 
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Figure 6-59: The normalized transient temperature distribution in Model I1 for 

z0=20.0, h, /h ,=24 .0 ,  ~ o = r o D l / h l  , (Material pair A) 2 
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Figure 6-60 The normalized transient stress distribution G,,,,/Q~~ in Model I1 

for 2,=20.0 , h,/h1=24.0 , ~ ~ = t ~ D ~ / h :  , aoT=-a; El@o/(l-vl). 
(Material pair A) 

206 



b 

0 
0 

0 
0 

I 

.oo 
I I 

6.25 12.50 

Figure 6-60, continued 

I 

18.75 
I 

25.00 

207 



0 
0 

r( 

0 cn 

0 
Lo 

0 a 
a %  

0 cu 

0 
0 

.00 6.25 12.50 18.75 25.00 

z / h ,  
Figure 6-61: The normalized transient temperature distribution in Model 11 for 

z0=40.0, h2/h ,=24.0 ,  7 0 = r o D l / h l ,  (Material pair A) 2 

208 



0 
(51 

0 

0 
u) 

b 
\ 

2 
b o  
0 

0 
0 

0 
m 
I 

- 
1 2 

0 

- 
1 2 

z 
-c 
z 

h , / h ,  = 24.0 

r0 = 40.0 

I I I I 

.oo 6.25 12.50 18.75 25.00 

Figure 6-62: The normalized transient stress distribution CT,, , , /G~~ in Model I1 
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Figure 6-63: The normalized stress intensity factor k(b l )  as a function of 
nondimensional time T for an edge crack in Model I1 for .to=0.O , 
h / h 1 = 3 . 0  , Ri/L=9.0 and xL/E2=0.01108 , ~ O = f o D l / h l  , 

CY$=- ai E ,  Oo/(l -vl) (material pair A) 
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Figure 6-64: The normalized stress intensity factor k(bl )  as a function of 
nondimensional time 7 for an edge crack in Model II for x0=6.0 , 
b /h l=3 .0  , Ri/L=9.0  and xL/E2=0.01108 , xo=foDl /h:  , 
0oT=-  ai E ,  Oo/(l -vl) (material pair A) 
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Figure 6-65: The influence of zo on the normalized stress intensity factor k(b l )  

as a function of nondimensional time z for an edge crack of length 
Z1/h1=0.2 in Model I1 , h,/h1=3.0,  Ri/L=9.0 and xL/E2=0.01108 , 

z o = t o ~ l / h ;  , oo~=-  a; E ,  0~/(1-v,) (material pair A) 
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Figure 6-66: The influence of T~ on the normalized stress intensity factor k(bl )  

as a function of nondimensional time z for an edge crack of length 
l,/h1=0.9 in Model 11, h, /h ,=3 .0  , Ri/L=9.0 and xL/E2=0.01108 , 
To=toDl/hi, oor=-a; ~ , ~ , / ( ~ - v , ) ( m a t e r i a l p a i r ~ )  
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Figure 6-67: The normalized stress intensity factor k(b l )  as a function of 

nondimensional time T for an edge crack in Model I1 for T,=O.O , 

h2/h,=9.0 , Ri/L=9.0 and xL/E2=0.01108 , ~ o = t o D l / h ~  , 
oOT=- ai E ,  Oo/(l  -vl) (material pair A) 
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Figure 6-68: The normalized stress intensity factor k(bl )  as a function of 

nondimensional time 7 for an edge crack in Model II for T ~ =  10.0 , 
h,/h,=9.0 , Rj /L=9 .0  and xL/E2=0.01108 , ~ ~ = t ~ D , / h :  , 

aoT=- ai E ,  Oo/(l  -vl) (material pair A) 
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Figure 6-69: The influence of T~ on the normalized stress intensity factor k(bl)  

as a function of nondimensional time T for an edge crack of length 
Z1/h1=0.2 in Model I1 , h,/hl=9.0 , Ri/L=9.0 and xL/E2=0.01108 , 
~ ~ = t ~ D , / h : ,  ooT=-a;EIO,/(l-vl)(materialpairA) 
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Figure 6-70: The influence of T~ on the normalized stress intensity factor k(bl )  
as a function of nondimensional time T for an edge crack of length 
11/h1=0.9 in Model 11, %/h1=9 .0 ,  Ri/L=9.0  and xL/E2=0.01108, 

T o = t o D l / h , ,  ooT=- a; EIOo/(l-vl) (material pair A) 2 
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Figure 6-71: The normalized stress intensity factor k(b l )  as a function of 

nondimensional time T for an edge crack in Model I1 for ‘ro=0.O , 

%/h1=24.0 , Ri/L=9.0 and xL/E2=0.01108 , To=toDl/h:  , 
ooT=- ai E ,  Oo/(l -vl> (material pair A) 
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Eigure 6-72: The normalized stress intensity factor k(bl)  as a function of 
nondimensional time T for a n  edge crack in Model 11 for .r0=20.0 , 
4/hl=24.0 , Ri/L=9.0 and xL/E2=0.01108 , t o=foDl /h~  , 
ooT=- ai E ,  Oo/(l -v,) (material pair A) 
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Figure 6-73: The influence of zo on the normalized stress intensity factor k(b l )  
as a function of nondimensional time T for an edge crack of length 
Z,/h,=0.2 in Model I1 , %/h1=24.0, Ri/L=9.0  and xL/E2=0.01108 , 
~ o = t o D , / h , ,  ooT=- a; ,!Zl@o/(l-vl) (material pair A) 2 
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Figure 6-74: The influence of T~ on the normalized stress intensity factor k(b l )  
as a function of nondimensional time z for an edge crack of length 
Z,/hl=0.9 in Model 11, $/h1=24.0, Ri/L=9.0 and xL/E2=0.01108 , 
zo=roDl/hl , oo*=- a; El O0/(1 -vl) (material pair A) 2 
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Figure 6-75: The influence of T~ on the normalized stress intensity factor k(bl)  
as a function of nondimensional time T for a broken clad in Model 
I1 %/h1=3.0 , Ri/L=9.0 and xL/E2=0.01108 , zo=tODl/h: , 
oOT=- ai E ,  Oo/(l -vl) (material pair A) 
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Figure 6-76 The influence of T~ on the normalized stress intensity factor k(bl)  
as a function of nondimensional time T for a broken clad in Model 

2 
I1 b/hl=9.0 , Ri/L=9.0 and xL/E2=0.01108 , ~ o = t o D 1 / h ,  , 

aoT=- a; ElOO/(l-vl) (material pair A) 
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Figure 6-77: The influence of z0 on the normalized stress intensity factor k(bl)  

as a function of nondimensional time z for a broken clad in Model 
I1 h / h , = 2 4 . 0  , Ri/L=9.0 and ~L/Ez=0.01108 , 7 0 = t ~ D l / h :  , 
aoT=- a; E ,  Oo/(l -vl) (material pair A) 
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Figure 6-78 The influence of zo on the normalized stress intensity factor k(u2) 
as a function of nondimensional time z for an under-clad crack of 
length Z2/h,=0.004 in Model I1 $/h1=3.0 , Ri/L=9.0  and 

xL/E2=0.01108 , ~ o = r o D l / h ,  , ooT=- ai E l @ o / ( l - v l )  (material pair 
A) 
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Figure 6-79: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time T for a Gxed under-clad 
crack length Z2/h1=0.004 in Model I1 &/h1=3.0 , Ri/L=9.0  and 

xL/E2=0.01108, ~ O = r o ~ l / h l  , crOr=- a; E ~ @ ~ / ( I - V ~ )  (material pair 
A) 
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Figure 6-80 The normalized stress intensity factor k(az) as a function of 
nondimensional time T for an under-clad crack in Model I1 for 
.so=O.O , h,/h,=9.0 , Ri/L=9.0 and xL/E2=0.01108 , . so=toDl/h~ , 
ooT=- a; E, Oo/(l-vl) .(material pair A) 
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Figure 6-81: The normalized stress intensity factor k(bz) as a function of 
nondimensional time 7 for an under-clad crack in Model II for 

zo=O.O , h,/h1=9.0 , Rj/L=9.0  and xL/E2=0.01108 , zo=toDl/h: , 
oOT=- ai El Oo/(l -vl) .(material pair A) 
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Figure 6-82: The normalized stress intensity factor k(%) as a function of 
nondimensional time 7 for an under-clad crack in Model I1 for 

2 
~0=10.0 , b / h 1 = 9 . 0  , R i / t = 9 . 0  and xL/E2=0.01108 , Zo=toD,/hl , 
ad=- ai E,O0/(1 -vl) .(material pair A) 
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The normalized stress intensity factor k(b2) as a function of 
nondimensional time z for an under-clad crack in Model I1 for 

2 
~0=10.0 , h /h ,=g .O ,  Ri/L=9.0 a d  xL/E2=O.O11O8 , To=toD,/h,  , 

oOT=- ai E ,  Oo/(l -vl) .(material pair A) 
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Figure 6-84: The influence of zo on the normalized stress intensity factor k(u2) 
as a function of nondimensional time ‘5: for an under-clad crack of 
length Z2/h1=1.0 in Model II h/h l=9 .0  , Ri/L=9.0  and 

XL/E2=0.01108 , ‘5:o=foDl/h, , (soT=- ai El@o/(l-vl) (material pair 
A) 
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Figure 6-85: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time 7 for an under-clad crack of 
length Z2/h,=1.0 in Model II b/h,=9.0 , Ri/L=9.0  and 

xL/E2=0.01108 , T o = f o D , / h , ,  ooT=- a; El@O/(l-v,) (material pair 
A) 
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Figure 6-86: The influence of T~ on the normalized stress intensity factor k(u2) 
as a function of nondimensional time T for an under-clad crack of 
length Z2/h,=3.0 in Model 11 b / h , = 9 . 0  , Ri/L=9.0  and 

~L/E,=0.01108 , To=roD,/h, , oOT=- ai E,  Oo/(l -vl) (material pa2 
A) 
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Figure 6-87: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time z for an under-clad crack of 
length Z,/h,=3.0 in Model I1 b / h , = 9 . 0  , Ri/L=9.0 and 

xL/E2=0.01108 , ~ ~ = t ~ D , / h ,  , aoT=- a; El@o/(l-vl) (material pair 
A) 
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Figure 6-88: The normalized stress intensity factor k(3) , k(b2) as a function of 
nondimensional time T for under-clad crack in Model 11 for 
l2/h1=9.O , TO=O.O , Ir,/h,=24.0 , Ri/L=9.0 and x ~ / E ~ = o . o l l O 8  , 

2 
~ ~ = t ~ D , / h , ,  ooT=- a; EIC+,/(1-vl) .(material pair A) 
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Figure 6-89: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an under-clad crack in Model I1 for 

TO=O.O , h 2 / h 1 = 2 4 . 0 ,  Ri/L=9.0 and )$/E2=o.01108 , TO=foDl /h ,  , 
ad=- ai El @o/(I -vl) .(material pair A) 
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Figure 6-90 The normalized stress intensity factor k (az) , k (b,) as a function of 
nondimensional time 7 for an under-clad crack in Model I1 for 
12/h1=9.0 , 2,=20.0 , b/h1=24.0 , Ri/L=9.0 and xL/E2=0.01108 , 

zo=toDl /h l ,  oOT=- a; El@,/(1-vl) .(material pair A) 2 
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Figure 6-91: The normalized stress intensity factor k(b2) as a function of 
nondimensional time 7 for an under-clad crack in Model I1 for 

L 
~0=20.0 , %/h1=24.O , Ri/L=9.0 and ~L/E2=0.01108 , To=toD1/h1 

ooT=- a; E, OO/(l -vl) .(material pair A) 
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Figure 6-92: The influence of ‘io on the normalized stress intensity factor k(a2) 
as a function of nondimensional time T for an under-clad crack of 
length I2/h1=0.5 in Model 11, b/h1=24.0 , Rj /L=9 .0  and 

xL/E2=0.01108 , ‘To=roD,/hl , uOT=- ai El@o/(l-vl) (material pair 
A) 
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Figure 6-93: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time z for an under-clad crack of 
length 12/h1=0.5 in Model 11, 4/h1=24.0 , Ri/L=9.0  and 

~L/E2=0.01108 , .ro=toDl/hl , oOT=- a; E ,  Oo/( l  -vl) (material pair 
A) 
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Figure 6-94: The influence of zo on the normalized stress intensity factor k(a2) 
as a function of nondimensional time z for an under-clad crack of 
length Z2/h,=4.0 in Model II, h,/h,=24.0 , Ri/L=9.0 and 

xL/E2=0.01108 , Zo=foDl/hl , ooT=- ai ElQo/(1-vl) (material pair 
A) 
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Figure 6-95: The influence of zo on the normalized stress intensity factor k(b2) 
as a function of nondimensional time z for an under-clad crack of 
length z2/h,=4.0 in Model II, b / h , = 2 4 . 0  , Ri/L=9.0 and 

xL/E2=0.01108 , zO=toD,/h, , G ~ ~ = -  a; El@o/(l-vl) (material pak 
A) 
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Figure 6-96: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model II for .ro=O.O , b / h , = 3 . 0  , Ri/L=9.0 and xL/E2=0.01108 , 

.rO=toDl/hl , aoT=- ai E,0,/(1 -vl) (material pair A) 2 
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Figure 6-97: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for T ~ = ~ . O  , b/h1=3.0 , Ri/L=9.0  and xL/E2=0.01108 , 
‘co=toD1/hl , oo*=- a; El Oo/(l -vl) (material pair A) 2 
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Figure 6-98: The influence of ‘ E ~  on the normalized stress intensity factor k(b2) 

as a function of nondimensional time ‘E for an edge crack of length 
Z/h1=1.2 crossing the interface in Model II , h,/h,=3.0 , Ri/L=9.0 

and xL/E2=0.01108 , ‘co=toDl/h:, oOT=- ai ElOO/(l-vl) (matend 
pair A) 
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Figure 6-99: The influence of zo on the normalized stress intensity factor k(b2)  
as a function of nondimensional time z for an edge crack of length 
I/h1=2.0 crossing the interface in Model II , 4 / h 1 = 3 . 0  , Ri/L=9.0 

and xL/E2=0.01108 , q,=roDl/hl , oOT=- a; E10,/(1 -vl) (material 
pair A) 
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Figure 6-100: The normalized stress intensity factor k(b2) as a function of 
nondimensional time 7 for an edge crack crossing the interface in 
Model I1 for T ~ = O . O  , h2/h1=9.0 , Ri/L=9.0 and ~L/E2=0.01108 , 

~ o = t o D l / h l ,  ooT=-a; E,OO/(l-v,) (material pair A) 2 
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Figure 6-101: The normalized stress intensity factor k(b2) as a function of 
nondimensional time z for an edge crack crossing the interface in 
Model I1 for zo=lO.O,  b/h,=9.0 , Ri/L=9.0  and xL/E2=0.01108 , 
zo=toD, /h~  , Go*=- ai E ,  0 ~ / ( 1 - v ~ >  (material pair A) 
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Figure 6-102: The influence of ro on the normalized stress intensity factor k(b2) 
as a function of nondimensional time r for an edge crack of 
length Z/h,=1.5 crossing the interface in Model I1 , h2/h ,=9.0  , 

Ri/L=9.0 and xL/E2=0.01108, ~ O = r o D , / h l  , oo*=- a; E10,/(1 -vl> 
(material pair A) 
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Figure 6-103: The influence of zo on the normalized stress intensity factor k(b2) 
as a function of nondimensional time o for an edge crack of 
length l/h1=4.0 crossing the interface in Model 11, %/hl=9.0 , 
Ri/L=9.0 and xL/E2=0.01108, 70=roDl/hl , ad=- a; ElC30/(l-vl) 
(material pair A) 
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Figure 6-104: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for zo=0.O , h,/h,=24.0 , Ri/L=9.0 and xL/E2=0.01108 , 
~ o = t o D l / h l  , oar=- a; E ,  Oo/(l  -vl) (material pair A) 2 
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6-105: The normalized stress intensity factor k(b2) as a function of 
nondimensional time z for an edge crack crossing the interface in 
Model I1 for z0=20.0 , h , / h , = 2 4 . 0 ,  Ri /L=9.0  and ~L/E,=0.01108 , 

xo=roDl/hl , ooT=- a; E10,/(1 -vl) (material pair A) 2 
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Figure 6-106: The influence of T~ on the normalized stress intensity factor k(b2) 

as a function of nondimensional time T for an edge crack of 
length l /h ,=1 .5  crossing t h e  interface in Model 11 , b / h l = 2 4 . 0  , 
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2 Ri/L=9.0 and xL/E2=0.01l08 , TO=toDl/hl , 0oT=- ai E l @ o / ( l - ~ I )  

254 



Y 

m C 
w 

1 

I I I I I 

.o 7.5 15.0 22.5  30.0X10 
2 r =  tD ,  / h, 

Figure 6-107: The influence of T~ on the normalized stress intensity factor k(b2) 
as a function of nondimensional time T for an edge crack of 
length Z/h1=5.0 crossing the interface in Model II , b/h1=24.0 , 
Ri/L=9.0 and xL/E2=0.01108, ~ ~ = t ~ D ~ / h ~ ,  ooT=- ai El@o/(l-vl) 
(material pair A) 
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Figure 6-108: The normalized transient temperature distribution in Model I1 
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Figure 6-109: The normalized transient stress distribution on/ooT in Model I1 

T=- a; E ,  o0/(1 -vl). for T ~ = O . O  , h,/h,=9.0 , To=roD,/h, , oo 
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Figure 6-110: The normalized transient temperature distribution in Model II 
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Figure 6-112: The normalized transient temperature distribution in Model I1 
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Figure 6-114: The normalized transient temperature distribution in Model I1 
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Figure 6-116: The normalized stress intensity factor k(bl)  as a function of 
nondimensional time T for an edge crack in Model II for T ~ = O . O  , 
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Figure 6-117: The normalized stress intensity factor k(bl )  as a function of 
nondimensional time 7 for an edge crack in Model I1 for T ~ =  10.0 , 
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Figure 6-118: The influence of zo on the normalized stress intensity factor k(bl )  
as a function of nondimensional time z for an edge crack of 
length Z1/h1=0.2 in Model 11 , h,/hl=9.0 , Rj/L=9.0 and 

xL/E2=0.01185 , ‘to=toDl/hl , ooT=- a; E~@o/( l -v l )  (materid 
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Figure 6-119: The influence of zo on the normalized stress intensity factor k ( b l )  
as a function of nondimensional time z for a broken clad in Model 
I1 for p,=0.552538 , b/h l=9 .0  , Ri/L=9.0  and xL/E2=0.01185 , 

a; E ,  Oo/(l -vl) (material pair B) 2 zo=foD1/h ,  , GOT=- 
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Figure 6-120 The normalized stress intensity factor k(%) as a function of 
nondimensional time 7 for an under-clad crack in Model I1 for 
%=0.4512416, .r0=O.O, h , / h l = 9 . 0 ,  Ri/L=9.0 and xL/E2=0.01185, 

.r0=toD,/h1 , ooT=- a; El@o/(l-vl) .(material pair B) 2 

272 



0 co 
- 

m 

h, / h, = 9.0 

To = 0.0 

- --- -- P - 
m 

I 

4 

I 1 1 1 
.o 22.5 45.0 6 7 . 5  90.0 

r = t D l / h l  2 

Figure 6-121: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an under-clad crack in Model I1 for 
%=0.4512416, zo=0.O, h,/h,=g.O, Ri/L=9.0 and xL/E2=0.01185 , 
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Figure 6-122: The normalized stress intensity factor k(%) as a function of 
nondimensional time T for an under-clad crack in Model I1 for 
%=0.4512416, T ~ = I O . O ,  h /h l=9 .0 ,  Rj/L=9.0 and xL/E2=0.01185, 

TO=roDl /h ,  , ooT=- a; E ,  OO/(l -vl) .(material pair B) 2 
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Figure 6-123: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an under-clad crack in Model I1 for 
%=0.4512416, T ~ =  10.0, $/hl=9.0,  Ri/L=9.0 and xL/E2=0.01185, 

To=roDl/h,  , ooT=- ai E,0,/(1 -vl) .(material pair B) 2 
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Figure 6-124: The influence of zo on the normalized stress intensity factor k(u2) 

as a function of nondimensional time z for an under-clad crack of 
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Figure 6-125: The influence of T~ on the normalized stress intensity factor k(bz) 
as a function of nondimensional time 'E for an under-clad crack of 
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Figure 6-126: The normalized stress intensity factor k, as a function of 

nondimensional time ?: for an edge crack crossing the interface in 
Model I1 for p1=q=0.0187223 , T ~ = O . O ,  h,/hl=9.0, Ri/L=9.0 and 

xL/E2=0.01185 , ~ ~ = t ~ D , / h :  , ooT=- a; E,0,/(1 -vl) . (materid 
pair B) 
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Figure 6-127: The normalized stress intensity factor kq as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for p1=%=0.0187223 , T ~ = O . O ,  b / h l = 9 . 0 ,  R,/L=9.0 and 
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Figure 6-128: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for p,=%=0.0187223 , T ~ = O . O  , h,/hl=9.0 , Ri/L=9.0 and 
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Figure 6-129: The normalized stress intensity factor k, as a function of 
nondimensional time 7 for an edge crack crossing the interface in 
Model I1 for p1=a,=0.0187223, ‘so=lO.O, h,/hl=9.0,  Rj/L=9.0 and 

xL/E2=0.01185 , ‘so=toDl/hi , ooT=- a; E10,/(1 -vl) . (matend 
pair B) 
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Figure 6-130: The normalized stress intensity factor kq as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for p1=9=0.0187223, ~~=10.0, b / h , = 9 . 0 ,  R,/L=9.0 and 

xL/E2=0.01185 , .ro=toDl/h: , oOT=- a; EIGlo/(l-vl) . (material 
pair B) 
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Figure 6-131: The normalized stress intensity factor k(b2) as a function of 
nondimensional time T for an edge crack crossing the interface in 
Model I1 for pl=a,=0.0187223 , ~ ~ = 1 0 . 0 ,  $/hl=9.0, Ri/L=9.0  and 

xL/E2=o.01185 , ~ o = r o D l / h l  , GoT=- CL; Elao/(l-Vl). (material 
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Figure 6-132: The influence of I C ~  on the normalized stress intensity factor k, as 
a function of nondimensional time IC for an edge crack of length 
I/hl=1.5 crossing the interface, in Model I1 for p,=~=O.O1872238 

, h/hl=9.0 , Ri/L=9.0 and xL/E2=0.O1185 , ~ o = t o D l / h l  , 
o0L-  a iEl  Oo/(l -vl) . (material pair B) 
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Figure 6-133: The influence of T~ on the normalized stress intensity factor kT 

as a function of nondimensional time ‘5 for an edge crack of 
length f/h,=1.5 crossing the interface , in Model 11 for 
p1=9=0.01872238 , $/h,=9.0 , Ri/L=9.0  and xL/E2=0.01185 , 

a; E ,  Oo/(l -vl) . (material pair B) 2 ‘50=foD,/h1 , GOT=- 
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Figure 6-134: The influence of T~ on the normalized stress intensity factor (b2) 
as a function of nondimensional time T for an edge crack of 
length l /h1=1 .5  crossing the interface , in Model 11 for 
p1=%=0.01872238 , h, /h l=9 .0  , Ri/L=9.0  and xL/E2=0.01185 , 
~ o = t o D l / h l  , oOT=- ai E ,  O o / ( l - v l )  . (material pair B) 2 
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Appendix (A) 
The Governing Equations for the Displacements 

For a two dimensional, isotropic, elastic material in the absence of the 

body forces, we have the equilibrium equations 
aoxx ao, 

ax ay -+-=o, 

ao, ao,,,, 
ax ay -+-- -0, 

the strain displacement relations 
- a u  

ax 
a U  -ay’ 

E= --, 

- 

and the strain-stress relations (Hooke’s law) 

for plane stress 
OZZ = zxz = zyz = 0 , 

1 
D E  

E =-(o,,,,-vo,) , 

29 1 



and for plane strain 
E, = yx = Y,, = 0 9 

By solving equations (l), (2), and (3) for the plane stress, and equations 

(l), (21, and (4) for the plane strain, we end up with the governing equations as 

follows 

where 

K = (3-4v) 

K=- for generalized plane stress 

for plane strain. 
3 -v 
1 + v  

V =  Poisson’s ratio 
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Appendix (B) 
Some useful integrals 

4 e-px sin qx dx = - 
JO- p2+2 

P e-px cos qx dx = - 
JO- p2+2 

; s > x  

; s > x  

; s>x  

; s > x  

; s > x  

; s e x  

; s e x  
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; s < x  

; s < x  
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Appendix (C) 
The functions that appear in the solution of crack problems given in 

Chapter 2. 

K1-1 
e2 = - 2 

K1-1 
es = m ( - - h a )  

2 

K1+l 
e7 = - M ( ~  + h a )  e2ha 

K1+l 
eg = m ( - - h a )  

2 

e10 = Pa 

el = h a  eBa 

e12 = h a  

e13 = - (K1+ha)e2ha 
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e14 = -(K1-ha) 

e15 = ( +c2-ha) 

M, =-(l-rla)e"ia 

M2 = (-r1a)e-'ia 

M3 = -m ( r ,  - h) ae'i a 

Ms = -m [ 1 +(rl -h) a ]  efia 
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where 

1 1  H +--H7 
2 0  2 0  

1 K 1 1  H l  = -(1-2t a e-fia--- 2 1 )  

1 1  K11 
2 0  2 0  

HS = ---H4+--H8 

29 7 



H7= {4d4(1-2rla)}e- '1a 

+ { - d 2 d 3 [ 1 - 2 ( r l - h ) a ] } e - ( ' ~ + U ) a  

+ { d2 d3 (2ha) [ 1 + 2(rl - h) a ]  - d ,  d4 } e('i -2h)a 

+ { d ,  d3 } e('i-4h)a 

Hs = { -d2ds(2ha)+d4dS [ 1-2(r2-h)a] } e-'2a 

+ { -d3d5[1-2(r2-h)a] }e-('2+U)a 

d6 a d6 1 H,, =-e 1 +--H7 
d2 4 D  

and 
D = - d2 d4 + [ d ,  d4 + d2 d3 + d2 d3 (2ha)2] e-2ha - d,  d3 e-4ha 

d,= mK2-K1 
d2 = m ~ ~ +  1 
d3=m- l  
d4 = m + K 1  

ds=%+l  
d6 = m ( ~ , + l )  
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Appendix (D) 
If the functionflz) has a pole of order rn at z = a , then the residue offlz) at  

z = a ,  is given by 
1 P-1 Res(z = a) = lim - [ - { (z-a)"flz)}] . 

z +  a (rn-111 d P - '  

In the case of a simple pole (rn = 1) , equation (1) gives 
Res(z = a) = lim [(z-a)flz)] . 

I +  a 

If,flz) is expressed as the ratio 

where N(a) is finite and nonzero and D(z)  vanishes a t  z = a in such a way that 
D(z) - approaches a finite limit as z -+  a ,  then equation (2) can be written as 

@ - a )  

N(z) 
z +  a D (4 

Res(z = a) = lim [(z-a)-] . 

By using L'Hopital rule to  evaluate the limits we have 

l z = a  * 
N(z)  

d 
-D(4 dz 

Res(z = a) = [- 

Now, let equations (2.72) be written in the form 

Oj(X1,t) = - fj(z)dz , (j = 1,2). 

(4) 

where 
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0, e& cosh C2 (X I  - h2) 

MZ)  = z [ cosh 5, h, cosh 52 $ + 7\ sinh 5, h, sinh 52 h2]  - 

and 

f , ( z )  , f2(z) have simple poles at  z = 0 , and at  z ,  = - D l w i  , where f w, are the 

roots of the equation 
cosw,hl cos6w,h2-q sinw,hl sin6w,h2 = 0 

and 

(9) 

2 
By applying equation ( 5 )  the residue at z = 0 and z =.-D,w, for bothf,(z) andf2(z) 

are 
R e s [ z  = 0 ; f l ( z ) ]  = 00. 
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[cos w,x' cos w, 6 h, +q sin wmx* sin w, 6 h2] 
[(hl +q6h2) sin w, h,  cos w, 6 h2 + (6 + q h,)  cos w, h,  sin w, 6 h21 ' 

2 
0, Wm 

wrn 
* 2 R e s [ z = - D , w ,  ; f2(z)]  =- 

30 1 



Appendix (E) 
For T~ = 0 

[sin h, cos h, 6 R  +q (cos 1,- 1 )sin h, 6 R ]  
[ (  l+q6R)sinh,cosh,6R+(6R+q)cosh,sinh,6R] ' 

sin h, 6 R 
[ (1 +q 6 R)  sin h, cos h, 6 R + (6 R +q) cos h, sin h, 6 R 3 

[sin h, cos h, 6 R +'q (cos A, - 1) sin h, 6 R ]  
[ (1 +q 6 R )  sin h, cos h, 6 R + (6 R +q) cos h, sin h, 6R 3 ' 

2 
1+R O,(X*,T) W (e-7L-1) * 

&* = L R + 2  c I, 0 0  70 m=l T0hi6 

sin A, 6 R 
[ (1 +q 6 R )  sin h, cos h, 6 R + (6 R +q) cosh,sin h, 6 R ] * 

(3) 

(4) 
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where 

[sin A,,, cosh,,, 6 R +q (cash,,,- 1) sin h,,, 6 R ] 

[ (1 +q 6 R )  sin h, cos hm 6 R + ( 6  R +q) cos A,,, sin A,,, 6 R ] * 

sin hm 6 R 

[ (1 +q 6 R )  sin h, cos A,,, 6 R  + ( 6 R  +q) cos A,,, sin h, 6 R  ] * 

and h,,, are the roots of the following equation 
cos h, cos h, 6 R -q sin h, sin A,,, 6 R  = 0 

303 



Appendix (F) 
Further definitions to support the solution of the crack problems given in 

Chapter 2. ei ,(i= 1.15) , Mi(j= 1,lO) are found in Appendix (C). 

e17 = ( % + h l a ) e  2ha 1 

e18 = -P 

+ a L )  e* e19 = -(- 
% + I  

2 

e23 = aLe* 

e24 = a L 

M l ,  = - [ 1 + ( t2-L)  a ]  e2za 

K 2 -  1 
M12 = - [ ( r 2 - L ) a + p  { - - ( t2 -L)a} ]e f za  2 
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where 
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1 - f a - -  1 K1 
2Q3 + 5 Q 7  

Q 5 = Z e  
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ell = ( - ) e e ' l a + ( - ) Q 7 + ( - - ) - Q 1 3 e  d6 d6 2 3  1 2h 1 a 
4 d2 d2 Do 

d3 1 
d2 DO 

+ (--) (% + 2h1 a)-Qls e2% a 

d3 d6 
Q12 = (-) [ 1-2 (r2- h l ) a ]  e-(22-2hi a)+ (-)es 4 d2 

W3 1 d3 1 
62 Do d2 DO 

+(--)-Q14$h~ a+ (--) (%+2hl a)-Q16$hl a 
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. 
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e-2h1a Qis = Qis 

3 12 
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r3 = (d7- 1){ -d6d2d3}{ 1 +(2hla) ( l  + 2 t l a ) }  

3 14 
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s7 = {[d7+l +2(t2-L)a](-d2d3dld3)} 

where H3 ,H4, H 7 ,  H8 , D , d ,  , d2,  d3 ,  d4,  d, , d, can be found in Appendix (C), and 
K2+ 1 

d7 = P T  
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Appendix (G) 
In general, the singular integral of the form 

wFly) dr . 

fir)  = In. 

can be obtained by using a Gaussian Quadrature formula. Let us rewrite 

equation (1) in the following form. 

The first integral in the right hand side of ( 4 )  is bounded as r - s  , i.e. 

d where (') , is z. 
Equation (4) may now be written as 

Since the weight function w(r) is in the form of equation (2), then by using 

Jacobi-Gauss Quadrature formula (see, Erdogan [401 or Stroud [44 ] ) ,  we may 

have 
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where r, is the f h  zero of the Jacobi polynomial 

p j ; B * - a ) ( r , ) = ~ ;  1=1,2 ,..... n. 

and the weighting functions A, are 
(2n-a-p+2)r(n-a+ i ) r ( n - p + i )  * 
(n- 1) ! (n-a- p + l ) r (n -a -  p+ 1) 

A , = -  

In our case g(r)  is in the form 

or as r + s, g(r)  will be equal to 

1 In the special case, if a= p =-z, the closed form solution of the integral (1) can be 

put in the following form 

where 
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r cq) 
di = . /X , n - i  = odd, -i+ 1 rc-1 2 

tii = 0 ,  n- i  = even 

Also, the function g(r) in equation (7) may be in the form 

g(r)  = Ar)  * 

or 

g(r) =Ar)KC(s,r), i , j =  1 , 2 .  (15) 

where fir) is @veri in equation (31, and Kij (s , r )  , ( i  , j= 1 , 2 )  are the kernels of the 

singular integral equations (4.4). 

The integral as in equations (2.64), i.e. 

/ o m G s ( x , t , a ) d a ,  i , j =  1 , 2 .  

may be evaluated by using Laguerre-Gauss Quadrature formula, by changing 

the integral (16) into 
LW LW 

G i i ( x , f , a ) d a =  [ G i j ( x , f , a ) e a ] e - a d a ,  i , j =  1 , 2 .  
JO JO 

then, the integral becomes (see, Stroud [@I), 
n 

1=1 
JOm [ G i j ( x ,  t ,  a ) e a ]  = A, [ GU(x , t ,  al)ear] 

where aI is the Zrh zero of Laguerre polynomial 
Ln(al)=O , Z=1,2 ,..... n .  

(17) 

and the weighting function A, given by 
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, 1=1,2, ...... n . (n !)2 
d 
da 

A, = 
a, [ -L, <a,> l2 
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